At the present time, machine learning methods have been becoming popular and the usage areas of these methods have also increased with this popularity. The machine learning methods are expected to increase in the cyber security components like firewalls, antivirus software etc. Nowadays, the use of this type of machine learning methods brings with it various risks. Attackers develop different methods to manipulate different systems, not only cyber security components, but also image detection systems. Therefore, securing machine learning models has become critical. In this paper, we demonstrate a data poisoning attack towards classification method of machine learning models and we also proposed a defense algorithm which makes machine learning models more robust against data poisoning attacks. In this study, we have conducted data poisoning attacks on MNIST, a widely used character detection data set. Using the poisoned MNIST dataset, we built classification models more reliable by using a generative model such as AutoEncoder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.