Deep Packet Inspection (DPI) provides full visibility into network traffic by performing detailed analysis on both packet header and packet payload. Accordingly, DPI has critical importance as it can be used in applications i.e network security or government surveillance. In this paper, we provide an extensive survey on DPI. Different from the previous studies, we try to efficiently integrate DPI techniques into network analysis mechanisms by identifying performance-limiting parameters in the analysis of modern network traffic. Analysis of the network traffic model with complex behaviors is carried out with powerful hybrid systems by combining more than one technique. Therefore, DPI methods are studied together with other techniques used in the analysis of network traffic. Security applications of DPI on Internet of Things (IoT) and Software-Defined Networking (SDN) architectures are discussed and Intrusion Detection Systems (IDS) mechanisms, in which the DPI is applied as a component of the hybrid system, are examined. In addition, methods that perform inspection of encrypted network traffic are emphasized and these methods are evaluated from the point of security, performance and functionality. Future research issues are also discussed taking into account the implementation challenges for all DPI processes.
Nowadays, almost all network traffic is encrypted. Attackers hide themselves using this traffic and attack over encrypted channels. Inspections performed only on packet headers and metadata are insufficient for detecting cyberattacks over encrypted channels. Therefore, it is important to analyze packet contents in applications that require control over payloads, such as content filtering, intrusion detection systems (IDSs), data loss prevention systems (DLPs), and fraud detection. This technology, known as deep packet inspection (DPI), provides full control over the communication between two end stations by keenly analyzing the network traffic. This study proposes a multi-pattern-matching algorithm that reduces the memory space and time required in the DPI pattern matching compared to traditional automaton-based algorithms with its ability to process more than one packet payload character at once. The pattern-matching process in the DPI system created to evaluate the performance of the proposed algorithm (PA) is conducted on the graphics processing unit (GPU), which accelerates the processing of network packets with its parallel computing capability. This study compares the PA with the Aho-Corasick (AC) and Wu–Manber (WM) algorithms, which are widely used in the pattern-matching process, considering the memory space required and throughput obtained. Algorithm tables created with a dataset containing 500 patterns use 425 and 688 times less memory space than those of the AC and WM algorithms, respectively. In the pattern-matching process using these tables, the PA is 3.5 and 1.5 times more efficient than the AC and WM algorithms, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.