The development of new batteries has historically been achieved through discovery and development cycles based on the intuition of the researcher, followed by experimental trial and error—often helped along by serendipitous breakthroughs. Meanwhile, it is evident that new strategies are needed to master the ever‐growing complexity in the development of battery systems, and to fast‐track the transfer of findings from the laboratory into commercially viable products. This review gives an overview over the future needs and the current state‐of‐the art of five research pillars of the European Large‐Scale Research Initiative BATTERY 2030+, namely 1) Battery Interface Genome in combination with a Materials Acceleration Platform (BIG‐MAP), progress toward the development of 2) self‐healing battery materials, and methods for operando, 3) sensing to monitor battery health. These subjects are complemented by an overview over current and up‐coming strategies to optimize 4) manufacturability of batteries and efforts toward development of a circular battery economy through implementation of 5) recyclability aspects in the design of the battery.
Lithium-ion batteries (LIBs) have been proven as an enabling technology for consumer electronics, electro mobility, and stationary storage systems, and the steadily increasing demand for LIBs raises new challenges regarding their sustainability. The rising demand for comprehensive assessments of this technology's environmental impacts requires the identification of energy and materials consumed for its production, on lab to industrial scale. There are no studies available that provide a detailed picture of lab scale cell production, and only a few studies provide detailed analysis of the actual consumption, with large deviations. Thus, the present work provides an analysis of the energy flows for the production of an LIB cell. The analyzed energy requirements of individual production steps were determined by measurements conducted on a laboratory scale lithium-ion cell production and displayed in a transparent and traceable manner. For the comparison with literature values a distinction is made between the different production scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.