The wavelength-dependent penetration depth of ultraviolet radiation in human skin is a fundamental parameter for the estimation of the possible photobiological impact of ultraviolet (UV) radiation. We have determined the absorption spectra of human skin in vivo in the wavelength range from 290 to 341 nm in 3-nm steps using laser optoacoustics and calculated the respective penetration depths. Data were analyzed with respect to different skin regions and skin phototype of the 20 subjects in the study (phototype I: n=3; II: n=7; III: n=5; IV: n=5), revealing large variability between individuals. The penetration depth of UV radiation in human skin is highly dependent on wavelength and skin area, but no significant dependence on skin phototype could be found.
Knowledge of the optical properties of human skin in the ultraviolet range is fundamental for photobiologic research. However, optical properties of human skin in the ultraviolet spectral range have so far mainly been measured ex vivo. We have determined the absorption spectra of human skin in vivo in the wavelength range from 290 to 341 nm in 3 nm steps using laser optoacoustics. In this technique, optical properties are derived from the pressure profile generated by absorbed light energy in the sample. In a study on 20 subjects belonging to phototypes I-IV, we studied the optical properties at the volar and dorsal aspect of the forearm as well as on the thenar. Analysis of the measured absorption spectra shows that comparable skin areas-like different sides of the forearm-have qualitatively similar optical characteristics. Still, the optical properties may vary substantially within the same area, probably due to the skin structure and inhomogeneities. Comparison of the spectra from different skin sites indicates that the spectral characteristics of the stratum corneum and its chromophores play an important role for the optical properties of human skin in vivo in the ultraviolet B range.
The difference between native and facultative pigmentation may be explained by the absorption properties of the two prime chromophores responsible for adaptation to higher UV exposure: melanin and keratin. Stronger pigmentation, i.e. a higher melanin concentration, is found as an increase of absorption coefficients over the entire UVA-II/UVB range. The thickening of the horny layer and accordingly, a higher influence of keratin on the absorption spectra is prominent especially in the UVB region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.