Dodecaborate anions of the type B12X122− and B12X11Y2− (X=H, Cl, Br, I and Y=OH, SH, NH3+, NR3+) form strong (Ka up to 106 L mol−1, for B12Br122−) inclusion complexes with γ-cyclodextrin (γ-CD). The micromolar affinities reached are the highest known for this native CD. The complexation exhibits highly negative enthalpies (up to −25 kcal mol−1) and entropies (TΔS up to −18.4 kcal mol−1, both for B12I122−), which position these guests at the bottom end of the well-known enthalpy-entropy correlation for CDs. The high driving force can be traced back to a chaotropic effect, according to which chaotropic anions have an intrinsic affinity to hydrophobic cavities in aqueous solution. In line with this argument, salting-in effects revealed dodecaborates as superchaotropic dianions.
Dodecaborate anions of the type B12X122− and B12X11Y2− (X=H, Cl, Br, I and Y=OH, SH, NH3+, NR3+) form strong (Ka up to 106 L mol−1, for B12Br122−) inclusion complexes with γ‐cyclodextrin (γ‐CD). The micromolar affinities reached are the highest known for this native CD. The complexation exhibits highly negative enthalpies (up to −25 kcal mol−1) and entropies (TΔS up to −18.4 kcal mol−1, both for B12I122−), which position these guests at the bottom end of the well‐known enthalpy‐entropy correlation for CDs. The high driving force can be traced back to a chaotropic effect, according to which chaotropic anions have an intrinsic affinity to hydrophobic cavities in aqueous solution. In line with this argument, salting‐in effects revealed dodecaborates as superchaotropic dianions.
A supramolecular anchor motif has been found that consists of dodecaborate dianions (B12X122−, X=H, Cl, Br, I) as purely inorganic guests and γ‐cyclodextrin as a macrocyclic host. As shown by K. Rissanen, D. Gabel, W. M. Nau et al. in their Communication on the high micromolar affinity of this hybrid organic–inorganic host–guest complex is traced back to the chaotropic (water structure‐breaking) nature of the globular clusters, their shape complementarity, and their high polarizabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.