In the present study, the properties of calcium carbonate mineralization and urease and carbonic anhydrase activities of Bacillus amyloliquefaciens U17 isolated from calcareous soil of Denizli (Turkey) were analyzed. CaCO 3 was produced in all growth phases. Strain U17 showed 0.615 ± 0.092 µmol/min/mg urease enzyme activity in calcium mineralization medium and 1.315 ± 0.021 µmol/min/mg urease enzyme activity in Luria-Bertani medium supplemented with urea, whereas it showed 36.03 ± 5.48 nmol/min/ mg carbonic anhydrase enzyme activity in CaCO 3 precipitation medium and 28.82 ± 3.31 nmol/min/mg carbonic anhydrase enzyme activity in Luria-Bertani medium supplemented with urea. The urease B protein expression level of strain U17 was detected by western blotting for the first time. The produced CaCO 3 crystals were analyzed by X-ray diffraction, X-ray fluorescence, confocal RAMAN spectrophotometer, scanning electron microscopy, and electron probe microanalyzer for the evaluation of their morphological and elemental properties. Rhombohedral vaterite and layered calcite crystals were clearly detected and verified by mineralogical analyses. All these results showed that strain U17 can be used in many engineering and geological applications due to its CaCO 3 precipitation ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.