The COVID-19 pandemic is continuing, and the innovative and efficient contributions of the emerging modern technologies to the pandemic responses are too early and cannot be completely quantified at this moment. Digital technologies are not a final solution but are the tools that facilitate a quick and effective pandemic response. In accordance, mobile applications, robots and drones, social media platforms (such as search engines, Twitter, and Facebook), television, and associated technologies deployed in tackling the COVID-19 (SARS-CoV-2) outbreak are discussed adequately, emphasizing the current-state-of-art. A collective discussion on reported literature, press releases, and organizational claims are reviewed. This review addresses and highlights how these effective modern technological solutions can aid in healthcare (involving contact tracing, real-time isolation monitoring/screening, disinfection, quarantine enforcement, syndromic surveillance, and mental health), communication (involving remote assistance, information sharing, and communication support), logistics, tourism, and hospitality. The study discusses the benefits of these digital technologies in curtailing the pandemic and ‘how’ the different sectors adapted to these in a shorter period. Social media and television’s role in ensuring global connectivity and serving as a common platform to share authentic information among the general public were summarized. The World Health Organization and Governments’ role globally in-line with the prevention of propagation of false news, spreading awareness, and diminishing the severity of the COVID-19 was discussed. Furthermore, this collective review is helpful to investigators, health departments, Government organizations, and policymakers alike to facilitate a quick and effective pandemic response.
Parallel Kinematic Machines (PKMs) are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool. PKMs are found in medical, assembly and manufacturing industries where accuracy is necessary. It is often desired to have a compact and simple architecture for the robotic mechanism. In this paper, the kinematic and dynamic analysis of a novel 3-PRUS (P: prismatic joint, R: revolute joint, U: universal joint, S: spherical joint) parallel manipulator with a mobile platform having 6 Degree of Freedom (DoF) is explained. The kinematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg (DH) technique considering both active and passive joints. The kinematic equations are used to derive the Jacobian matrix of the mechanism to identify the singular points within the workspace. A Jacobian based stiffness analysis is done to understand the variations in stiffness for different poses of the mobile platform and further, it is used to decide trajectories for the end effector within the singularity free region. The analytical model of the robot dynamics is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints. The gravity and inertial forces of all links are considered in the mathematical model. The analytical results of the dynamic model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector.
Solid waste management is one of the critical challenges seen everywhere, and the coronavirus disease (COVID-19) pandemic has only worsened the problems in the safe disposal of infectious waste. This paper outlines a design for a mobile robot that will intelligently identify, grasp, and collect a group of medical waste items using a six-degree of freedom (DoF) arm, You Only Look Once (YOLO) neural network, and a grasping algorithm. Various designs are generated before running simulations on the selected virtual model using Robot Operating System (ROS) and Gazebo simulator. A lidar sensor is also used to map the robot's surroundings and navigate autonomously. The robot has good scope for waste collection in medical facilities, where it can help create a safer environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.