Chagas disease is a potentially life-threatening and neglected tropical disease caused by Trypanosoma cruzi. One of the most important challenges related to Chagas disease is the search for new, safe, effective, and affordable drugs since the current therapeutic arsenal is inadequate and insufficient. Here, we report a simple and cost-effective synthesis and the biological evaluation of the second generation of Mannich base-type derivatives. Compounds 7, 9, and 10 showed improved in vitro efficiency and lower toxicity than benznidazole, in addition to no genotoxicity; thus, they were applied in in vivo assays to assess their activity in both acute and chronic phases of the disease. Compound 10 presented a similar profile to benznidazole from the parasitological perspective but also yielded encouraging data, as no toxicity was observed. Moreover, compound 9 showed lower parasitaemia and higher curative rates than benznidazole, also with lower toxicity in both acute and chronic phases. Therefore, further studies should be considered to optimize compound 9 to promote its further preclinical evaluation.
ABSTRACT. Chagas disease is a neglected tropical disease with 6-7 million people infected worldwide and there is no effective treatment. Therefore, there is an urgent need to continue researching in order to discover novel therapeutic alternatives. We present a series of arylaminoketone derivatives as means of identifying new drugs to treat Chagas disease in the acute phase with greater activity, less toxicity and with a larger spectrum of action than that corresponding to the reference drug benznidazole. Indexes of high selectivity found in vitro formed the basis for later in vivo assays in BALB/c mice. Murine model results show that compounds 3, 4, 7 and 10 induced a remarkable decrease in parasitemia levels in acute phase and the parasitemia reactivation following immunosuppression, and curative rates were higher than with benznidazole. These high anti-parasitic activities encourage us to propose these compounds as promising molecules for developing an easy to synthesize anti-Chagas agent.
Tuberculosis,
caused by Mycobacterium tuberculosis (Mtb), is the infectious disease responsible for
the highest number of deaths worldwide. Herein, 22 new N-oxide-containing
compounds were synthesized followed by in vitro and in vivo evaluation of their antitubercular potential against Mtb. Compound 8 was found to be the most promising
compound, with MIC90 values of 1.10 and 6.62 μM against
active and nonreplicating Mtb, respectively. Additionally,
we carried out in vivo experiments to confirm the
safety and efficacy of compound 8; the compound was found
to be orally bioavailable and highly effective, leading to a reduction
of Mtb to undetectable levels in a mouse model of
infection. Microarray-based initial studies on the mechanism of action
suggest that compound 8 blocks translation.
Altogether, these results indicate that benzofuroxan derivative 8 is a promising lead compound for the development of a novel
chemical class of antitubercular drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.