In metalworking, rolling is a metal-forming process in which slab is passed through one or more pairs of the rolling dies to reduce the thickness and to make the thickness uniform. Modeling of rolling die contact with the slab primarily needs to describe the Tribology of contact phenomena. The central concern of numerical modeling is used in this work to indicate a set of equations, derived from the contact principle, that transfer the physical event into the mathematical equations. Continuum rolling contact phenomena is considered to explain how a contact region is formed between rolling die and slab and how the tangential force is distributed over the contact area with coefficient of friction. At the end, elasticity stress behavior of rolling die contact with the slab for a number of cyclic loads is modeled. The model includes new proposed constitutive equations for discontinuity of the velocity-pressure distribution in rolling contact from the entry side to exit side of the neutral point. To verify the model, finite element simulation and experimental data from the literature are considered. The results show good agreement with finite element simulation and experimental data.
In hot milling process, rolling die is subjected to nonsteady conditions which can rise the combinations of fatigue and spalling damage mechanism. An understanding about the failure mechanism of the rolling die is essential under hot rolling process. Fatigue crack growth and spalling process are governed by highly concentrated strain and stress in the crack tip region. Based on the theory of elastic‐plastic fracture mechanics, an analytical model are presented in this paper to determine the elliptical crack growth rate and spalling damage mechanism. The model includes new proposed constitutive equations for fatigue and spalling crack growth. To verify the models, finite element simulation and experimental data are considered. The results show good agreement with finite element simulation and experimental data.
Soil corrosivity was an active problem of water pipeline damaged by corrosion that affects the performance of pipe manufacturers. In Addis ababa, groundwater pipelines were facing breakage and like due to corrosion damage of the pipes. The population of nearly four million were facing a shortage of clean and continuous water supply. Maintenace and replacing old pipes with new ones increased additional cost and delay of water supply for the city. For this investigation of corrosion, causes were conducted which soil property is the one factor. Investigation of soil corrosivity for a given specific location before installation is important to design robust pipes that can serve for long life. Soil physicochemical behaviors of the soil parameters were pH, moisture content, and electrical resistivity for any type of soil. In addition, soil bulk density, total nitrogen, soil texture, and electrical conductivity were also the main factors to be studied. The laboratory result indicated that pH of 6.98-7.04, moisture content of 23.7-37.5%, and electrical conductivity of 0.105-313 ds/m were observed. Total nitrogen was small as 0.06-0.10 for a type of soil were class and loam soils. From the analysis of eight soil samples taken from different cities. The results show that the corrosivity behavior of buried iron pipes in the capital city of Ethiopia was moderately corrosive. As confirmed from various soil samples tested from corroded pipes at different depths of 40, 80, and 120 cm. The influence of soil corrosiveness factors initiates pits formation and propagates its width and depth on the surface of pipes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.