A before-after-control approach was used to analyze the impact of peatland restoration on hydrology, based on high temporal resolution water-table (WT) data from 43 boreal peatlands representative of a south-boreal to north-boreal climate gradient. During the study, 24 forestry drained sites were restored and 19 pristine peatlands used as control sites. Different approaches were developed and used to analyze WT changes (mean WT position, WT fluctuation, WT hydrograph, recession, and storage characteristics). Restoration increased WT in most cases but particularly in spruce mires, followed by pine mires and fens. Before restoration, the WT fluctuation (WTF) was large, indicating peat temporary storage gain (SG). After restoration, the WT hydrograph recession limb slopes and SG coefficients (Rc) declined significantly. Drainage or restoration did not significantly affect mean diurnal WT fluctuations, used here as a proxy for evapotranspiration. Overall, the changes in WT characteristics following restoration indicated creation of favorable hydrological conditions for recovery of functional peatland ecosystems in previously degraded peatland sites. This was supported by calculation of bryophyte species abundance thresholds for WT. These results can be used to optimize restoration efforts in different peatland systems and as a qualitative conceptual basis for future restoration operations.
Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before‐After‐Control‐Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several‐fold higher than observed at pristine control sites, highlighting the impacts of long‐term drainage on pore water quality. In general, pore water DOC and Ntot decreased after restoration measures but still remained significantly higher than at pristine control sites, indicating long time lags in restoration effects. Different peatland classes and trophic levels (vegetation gradient) responded differently to restoration, primarily due to altered hydrology and varying acidity levels. Sites that were hydrologically overrestored (inundated) showed higher Ptot, Ntot, and DOC than well‐restored or insufficiently restored sites, indicating the need to optimize natural‐like hydrological regimes when restoring peatlands drained for forestry. Rich fens (median pH 6.2–6.6) showed lower pore water Ptot, Ntot, and DOC than intermediate and poor peats (pH 4.0–4.6) both before and after restoration. Nutrients and DOC in pore water increased in the first year postrestoration but decreased thereafter. The most important variables related to pore water quality were trophic level, peatland class, water table level, and soil and air temperature.
Transfer functions are now commonly used to reconstruct past environmental variability from palaeoecological data. However, such approaches need to be critically appraised. Testate amoeba-based transfer functions are an established method for the quantitative reconstruction of past water-table variations in peatlands, and have been applied to research questions in palaeoclimatology, peatland ecohydrology and archaeology. We analysed automatically-logged peatland water-table data from dipwells located in England, Wales and Finland and a suite of three year, one year and summer water-table statistics were calculated from each location. Surface moss samples were extracted from beside each dipwell and the testate amoebae community composition was determined. Two published transfer functions were applied to the testate-amoeba data for prediction of water-table depth (England and Europe). Our results show that estimated water-table depths based on the testate amoeba community reflect directional changes, but that they are poor representations of the real mean or median water-table magnitudes for the study sites. We suggest that although testate amoeba-based reconstructions can be used to identify past shifts in peat hydrology, they cannot currently be used to establish precise hydrological baselines such as those needed to inform management and restoration of peatlands. One approach to avoid confusion with contemporary water-table determinations is to use residuals or standardised values for peatland water-table reconstructions. We contend that our test of transfer functions against independent instrumental data sets may be more powerful than relying on statistical testing alone.
The influence of seasonally frozen ground (SFG) on water, energy, and solute fluxes is important in cold climate regions. The hydrological role of permafrost is now being actively researched, but the influence of SFG has received less attention. Intuitively, SFG restricts (snowmelt) infiltration, thereby enhancing surface runoff and decreasing soil water replenishment and groundwater recharge. However, the reported hydrological effects of SFG remain contradictory and appear to be highly site- and event-specific. There is a clear knowledge gap concerning under what physiographical and climate conditions SFG is more likely to influence hydrological fluxes. We addressed this knowledge gap by systematically reviewing published work examining the role of SFG in hydrological partitioning. We collected data on environmental variables influencing the SFG regime across different climates, land covers, and measurement scales, along with the main conclusion about the SFG influence on the studied hydrological flux. The compiled dataset allowed us to draw conclusions that extended beyond individual site investigations. Our key findings were: (a) an obvious hydrological influence of SFG at small-scale, but a more variable hydrological response with increasing scale of measurement, and (b) indication that cold climate with deep snow and forest land cover may be related to reduced importance of SFG in hydrological partitioning. It is thus increasingly important to understand the hydrological repercussions of SFG in a warming climate, where permafrost is transitioning to seasonally frozen conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.