Global water scarcity assessment at a high spatial and temporal resolution, accounting for environmental flow requirements.
Abstract. This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m 3 ton −1 ), vegetables (300 m 3 ton −1 ), roots and tubers (400 m 3 ton −1 ), fruits (1000 m 3 ton −1 ), cereals (1600 m 3 ton −1 ), oil crops (2400 m 3 ton −1 ) to pulses (4000 m 3 ton −1 ). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m 3 GJ −1 ) than biodiesel, which supports earlier analyses. The crop used matters significantly The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm 3 yr −1 ), rice (992 Gm 3 yr −1 ) and maize (770 Gm 3 yr −1 ). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm 3 yr −1 ), China (967 Gm 3 yr −1 ) and the USA (826 Gm 3 yr −1 ). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm 3 yr −1 ) and the Ganges river basin (108 Gm 3 yr −1 ). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm 3 yr −1 (91% green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm 3 yr −1 (48 % green, 40 % blue, 12 % grey).
This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (gray WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agricultural and industrial commodities. The global annual average WF in the period 1996-2005 was 9,087 Gm 3 ∕y (74% green, 11% blue, 15% gray). Agricultural production contributes 92%. About one-fifth of the global WF relates to production for export. The total volume of international virtual water flows related to trade in agricultural and industrial products was 2,320 Gm 3 ∕y (68% green, 13% blue, 19% gray). The WF of the global average consumer was 1,385 m 3 ∕y. The average consumer in the United States has a WF of 2,842 m 3 ∕y, whereas the average citizens in China and India have WFs of 1,071 and 1,089 m 3 ∕y, respectively. Consumption of cereal products gives the largest contribution to the WF of the average consumer (27%), followed by meat (22%) and milk products (7%). The volume and pattern of consumption and the WF per ton of product of the products consumed are the main factors determining the WF of a consumer. The study illustrates the global dimension of water consumption and pollution by showing that several countries heavily rely on foreign water resources and that many countries have significant impacts on water consumption and pollution elsewhere.globalization | sustainable consumption | virtual water trade | water pollution
The increase in the consumption of animal products is likely to put further pressure on the world's freshwater resources. This paper provides a comprehensive account of the water footprint of animal products, considering different production systems and feed composition per animal type and country. Nearly one-third of the total water footprint of agriculture in the world is related to the production of animal products. The water footprint of any animal product is larger than the water footprint of crop products with equivalent nutritional value. The average water footprint per calorie for beef is 20 times larger than for cereals and starchy roots. The water footprint per gram of protein for milk, eggs and chicken meat is 1.5 times larger than for pulses. The unfavorable feed conversion efficiency for animal products is largely responsible for the relatively large water footprint of animal products compared to the crop products. Animal products from industrial systems generally consume and pollute more ground-and surface-water resources than animal products from grazing or mixed systems. The rising global meat consumption and the intensification of animal production systems will put further pressure on the global freshwater resources in the coming decades. The study shows that from a freshwater perspective, animal products from grazing systems have a smaller blue and grey water footprint than products from industrial systems, and that it is more water-efficient to obtain calories, protein and fat through crop products than animal products.
Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.