In this paper, we consider the stochastic fractional-space Kuramoto–Sivashinsky equation forced by multiplicative noise. To obtain the exact solutions of the stochastic fractional-space Kuramoto–Sivashinsky equation, we apply the G′G-expansion method. Furthermore, we generalize some previous results that did not use this equation with multiplicative noise and fractional space. Additionally, we show the influence of the stochastic term on the exact solutions of the stochastic fractional-space Kuramoto–Sivashinsky equation.
This article presents a homotopy perturbation transform method and a variational iterative transform method for analyzing the fractional-order non-linear system of the unsteady flow of a polytropic gas. In this method, the Yang transform is combined with the homotopy perturbation transformation method and the variational iterative transformation method in the sense of Caputo–Fabrizio. A numerical simulation was carried out to verify that the suggested methodologies are accurate and reliable, and the results are revealed using graphs and tables. Comparing the analytical and actual solutions demonstrates that the proposed approaches are effective and efficient in investigating complicated non-linear models. Furthermore, the proposed methodologies control and manipulate the achieved numerical solutions in a very useful way, and this provides us with a simple process to adjust and control the convergence regions of the series solution.
In this article, the new iterative transform technique and homotopy perturbation transform method are applied to calculate the fractional-order Cauchy-reaction diffusion equation solution. Yang transformation is mixed with the new iteration method and homotopy perturbation method in these methods. The fractional derivative is considered in the sense of Caputo-Fabrizio operator. The convection-diffusion models arise in physical phenomena in which energy, particles, or other physical properties are transferred within a physical process via two processes: diffusion and convection. Four problems are evaluated to demonstrate, show, and verify the present methods’ efficiency. The analytically obtained results by the present method suggest that the method is accurate and simple to implement.
We consider the Cahn–Hilliard (CH) equation with a Burgers-type convective term that is used as a model of coarsening dynamics in laterally driven phase-separating systems. In the absence of driving, it is known that solutions to the standard CH equation are characterized by an initial stage of phase separation into regions of one phase surrounded by the other phase (i.e. clusters or drops/holes or islands are obtained) followed by the coarsening process, where the average size of the structures grows in time and their number decreases. Moreover, two main coarsening modes have been identified in the literature, namely, coarsening due to volume transfer and due to translation. In the opposite limit of strong driving, the well-known Kuramoto–Sivashinsky equation is recovered, which may produce complicated chaotic spatio-temporal oscillations. The primary aim of the present work is to perform a detailed and systematic investigation of the transitions in the solutions of the convective CH equation for a wide range of parameter values, and, in particular, to understand in detail how the coarsening dynamics is affected by an increase of the strength of the lateral driving force. Considering symmetric two-drop states, we find that one of the coarsening modes is stabilized at relatively weak driving, and the type of the remaining mode may change as driving increases. Furthermore, there exist intervals in the driving strength where coarsening is completely stabilized. In the intervals where the symmetric two-drop states are unstable they can evolve, for example, into one-drop states, two-drop states of broken symmetry or even time-periodic two-drop states that consist of two traveling drops that periodically exchange mass. We present detailed stability diagrams for symmetric two-drop states in various parameter planes and corroborate our findings by selected time simulations.
We solve a coupled system of nonlinear fractional differential equations equipped with coupled fractional nonlocal non-separated boundary conditions by using the Banach contraction principle and the Leray-Schauder fixed point theorem. Finally, we give examples to demonstrate our results.
MSC: 34A08; 34B15Keywords: Caputo fractional derivative; Nonlocal; Non-separated boundary conditions; Existence of solutionwhere c D q denotes the Caputo fractional derivative of order q, f is a given continuous function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.