He received his Ph.D. from North Carolina State University. He taught mechanical engineering core courses for more than twelve years; he also teaches internal combustion engines, design of thermal systems, and related courses in the thermal science areas. He is a member of ASEE, SAE, and ASME. Taher Abu-Lebdeh, North Carolina A&T State University Dr. Abu-Lebdeh obtained his doctorate degree in Structural engineering from Louisiana State University. He taught civil and core engineering courses for about twenty years. Dr. Abu-Lebdeh research interests are in civil engineering and highway infrastructures, structural mechanics, and constitutive modeling of material behavior. He had co-authored about 17 papers, and research reports. Of this total, 12 papers have been published after peer review.
Thermal properties of composite materials such as, thermal conductivity, diffusivity, and specific heat are very important in engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells. Thermal conductivity is the property that determines the working temperature levels of the material; it plays a critical role in the performance of materials in high temperature applications, and it is an important parameter in problems involving heat transfer and thermal structures.
The objective of this paper is to develop a thermal properties data base for the carbon fiber-epoxy (IM7/8552-1) composite. The IM7 carbon fiber is a continuous, high performance, intermediate modulus, PAN based fiber. This fiber has been surface treated and can be sized to improve its interlaminar shear properties, handling characteristics, and structural properties. The 8552 is a high performance tough epoxy matrix for use in primary aerospace structures. It exhibits good impact resistance and damage tolerance for a wide range of applications. The IM7/8552-1 is an amine cured unidirectional prepreg. The manufacturer recommended cure cycle for this material was followed, which includes consolidation under vacuum and autoclave pressure. The composite has a service temperature up to 121°C (250°F).
The thermal properties of IM7/8552-1 carbon-epoxy have been investigated using experimental methods. The flash method was used to measure the thermal diffusivity of the composite. This method is based on the American Society for Testing and Materials standard, ASTM E1461. In addition, the Differential Scanning Calorimeter was used in accordance with the ASTM E1269 standard to measure the specific heat. The measured thermal diffusivity, specific heat, and density data were used to compute the thermal conductivity of the IM7/8552-1 carbon-epoxy composite.
As today’s technology continues to develop at a rate that was once unimaginable, the demand for new materials that will outperform traditional materials also increases dramatically. To meet these challenges, monolithic materials are being combined to develop new unique materials called composites. Thermophysical properties of composite materials such as thermal conductivity, diffusivity, specific heat, and thermal expansion are very important in engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells. Thermal conductivity is the property that determines the working temperature levels of a material and plays a critical role in the performance of materials in high temperature applications. This parameter is important in problems involving heat transfer and thermal structures.
The objective of this paper is to develop a thermal properties database for the carbon-epoxy AS4/3501-6 composite. The AS4 carbon fiber used is a unidirectional continuous PAN based fiber, and the 3501-6 epoxy resin is amine cured and provides low shrinkage during the curing process while maintain resistance to chemicals and solvents. The thermophysical properties of the AS4 composite have been investigated using experimental methods. The flash method was used to measure the thermal diffusivity of the composite based on the American Society for Testing and Materials standard, ASTM E1461. In addition, the Differential Scanning Calorimeter was used in accordance with the ASTM E1269 standard to measure the specific heat. The measured thermal diffusivity, specific heat, and density were used to compute the thermal conductivity, thus adding to the currently insufficient database for composite materials and foams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.