Software-defined networking (SDN) attracts the attention of the research community in recent years, as evidenced by a large number of survey and review papers. The architecture of SDN clearly recognizes three planes: application, control, and data plane. The application plane executes network applications; control plane regulates the rules for the entire network based on the requests generated by network applications; and based on the set rules, the controller configures the switches in the data plane. The role of the switch in the data plane is to simply forward packets based on the instructions given by the controller. By analyzing SDN-related research papers, it is observed that research, from the very beginning, is insufficiently focused on the data plane. Therefore, this paper gives a comprehensive overview of the data plane survey with particular emphasis on the problem of programmability and flexibility. The first part of the survey is dedicated to the evaluation of actual data plane architectures through several definitions and aspects of data plane flexibility and programmability. Then, an overview of SDN-related research was presented with the aim of identifying key factors influencing the gradual deviation from the original data plane architectures given with ForCES and OpenFlow specifications, which we called the data plane evolution. By establishing a correlation between the treated problem and the problem-solving approaches, the limitations of ForCES and OpenFlow data plane architectures were identified. Based on identified limitations, a generalization of approaches to addressing the problem of data plane flexibility and programmability is made. By examining generalized approaches, open issues have been identified, establishing the grounds for future research directions proposal.
Maximal-ratio combiner (MRC) performances in fading channels have been of interest for a long time, which can be seen by a number of papers concerning this topic. In this paper we treat bit error probability (BEP), symbol error probability (SEP) and outage probability of MRC in presence of κ-μ fading. We will present κ-μ fading model, probability density function (PDF), and cumulative distribution function (CDF). We will also present PDF, CDF, and outage probability of the L-branch MRC output. BEP/SEP will be evaluated for broad class of modulation types and for coherent and noncoherent types of detection. BEP/SEP and outage performances of the MRC will be evaluated for different number of branches via Monte Carlo simulations and theoretical expressions.
Maximal-Ratio Combiner (MRC) performances in fading channels have been of interest for a long time, which can be seen by a number of papers concerning this topic. Most of these papers treat Rayleigh, Nakagami-m, Hoyt, Rice or Weibull fading. This paper treats symbol error probability (SEP) performances of MRC in presence of generalized η μ − fading. In this paper, we will present η μ − fading model, and expressions for SEP of the L-branch MRC output. SEP will be treated for a broad class of modulation types and for non-coherent type of detection. SEP performances of the MRC will be presented via Monte Carlo simulations and theoretical expressions. Key words -generalized η μ − fading, maximal-ratio combining, Monte Carlo simulations, non-coherent detection, symbol error probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.