Disease incidence and severity was studied for winter wheat variety Bezostaya 1 and susceptible checks based on data from international nurseries from 1969 to 2010 and from 51 countries across major winter wheat production regions totalling 1,047 reports. The frequency of leaf rust and stripe rust occurrence was stable over time with marked increases in severity in 2001-2010 especially in Europe and Central and West Asia. Substantial global reductions in stem rust occurrence were recorded and attributed primarily to use of resistance genes although the recent emergence of race Ug99 makes wheat more vulnerable. The occurrence of powdery mildew remained globally stable over time. It was the most important foliar disease in Western and Southern Europe, where the frequency was very high for all time periods coupled with slight increases in severity during 2001-2010. The durable resistance of variety Bezostaya 1 to all four diseases was demonstrated in the study using comparisons of disease severities of Bezostaya 1 and the most susceptible entries. The Lr34/Yr18/Pm38 pleiotrophic set possessed by Bezostaya 1 is currently an important target for selection because it is now amenable to molecular selection. Increased use of genes like Lr34 combined with strategies to minimize Eur J Plant Pathol (2012) 132:323-340
The evolution of a new race of stem rust, generally referred to as Ug99, threatens global wheat production because it can overcome widely deployed resistance genes that had been effective for many years. To identify loci conferring resistance to Ug99 in wheat, a genome-wide association study was conducted using 232 winter wheat breeding lines from the International Winter Wheat Improvement Program. Breeding lines were genotyped with diversity array technology, simple sequence repeat and sequence-tagged site markers, and phenotyped at the adult plant stage for resistance to stem rust in the stem rust resistance screening nursery at Njoro, Kenya during 2009-2011. A mixed linear model was used for detecting marker-trait associations. Twelve loci associated with Ug99 resistance were identified including markers linked to known genes Sr2 and Lr34. Other markers were located in the chromosome regions where no Sr genes have been previously reported, including one each on chromosomes 1A, 2B, 4A and 7B, two on chromosome 5B and four on chromosome 6B. The same data were used for investigating epistatic interactions between markers with or without main effects. The marker csSr2 linked to Sr2 interacted with wPt4930 on 6BS and wPt729773 in an unknown location. Another marker, csLV34 linked to Lr34, also interacted with wPt4930 on 6BS and wPt4916 on 2BS. The frequent involvement of wPt4916 on 2BS and wPt4930 on 6BS in interactions with other significant loci on the same or different chromosomes suggested complex genetic control for adult plant resistance to Ug99 in winter wheat germplasm.
Improved winter wheat (Triticum aestivum L.) cultivars are needed for the diverse environments in Central and West Asia to improve rural livelihoods. This study was conducted to determine the performance of elite winter wheat breeding lines developed by the International Winter Wheat Improvement Program (IWWIP), to analyze their stability across diverse environments, and to identify superior genotypes that could be valuable for winter wheat improvement or varietal release. One hundred and one advanced winter wheat breeding lines and four check cultivars were tested over a 5-year period (2004)(2005)(2006)(2007)(2008). Grain yield and agronomic traits were analyzed. Stability and genotypic superiority for grain yield were determined using genotype and genotype 9 environment (GGE) biplot analysis. The experimental genotypes showed high levels of grain yield in each year, with mean values ranging from 3.9 to 6.7 t ha -1 . A set of 25 experimental genotypes was identified. These were either equal or superior to the best check based on their high mean yield and stability across environments as assessed by the GGE biplot analysis. The more stable high yielding genotypes were ID800994.W/Falke, Agri/Nac//Attila, ID8009 94W/Vee//F900K/3/Pony/Opata, AU//YT542/N10B/ 3/II8260/4/JI/Hys/5/Yunnat Esskiy/6/KS82W409/Spn and F130-L-1-12/MV12. The superior genotypes also had acceptable maturity, plant height and 1,000-kernel weight. Among the superior lines, Agri/Nac//Attila and Shark/F4105W2.1 have already been proposed for release in Kyrgyzstan and Georgia, respectively. The findings provide information on wide adaptation of the internationally important winter wheat genotypes, and demonstrate that the IWWIP program is enriching the germplasm base in the region with superior winter wheat genotypes to the benefit of national and international winter wheat improvement programs.
Development of winter wheat (Triticum aestivum) synthetics started at CIMMYT-Mexico in 2004, when winter durum wheat (Triticum turgidum) germplasm from Ukraine and Romania was crossed with Aegilops tauschii accessions from the Caspian Sea region. Chromosomes were doubled after pollination and embryo rescue, but chromosome number and cytological validation was not performed. F2 populations were grown in Mexico and were shipped to Turkey in 2008. During 2009–2015, these populations were subjected to rigorous pedigree selection under dry, cold, disease-affected environments of the Central Anatolian Plateau. The wide segregation and partial sterility observed in 2009 gradually decreased and, by 2016, most of the F8 single spike progenies demonstrated good fertility and agronomic performance. Since 2013, lines have been selected from synthetic populations and evaluated at multiple sites. Superior lines were characterized for resistance to leaf, stripe and stem rust, plant height, and reaction to common bunt and soil-borne pathogens. Thousand kernel weight of many lines exceeded 50 g, compared with the check varieties that barely reached 40 g. Threshability of synthetic lines varied from 0 to 95%, demonstrating genetic variation for this important domestication trait. Screening against Hessian fly, sunny pest and Russian wheat aphid identified several resistant genotypes. Both durum and Aegilops parents affected synthetic wheat traits. Several studies are underway to reveal the genetic diversity of synthetic lines and the basis of resistance to diseases and insects. This synthetic germplasm represents a new winter bread wheat parental pool. It is available upon request to interested breeding/research programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.