Magnetomyography (MMG) with superconducting quantum interference devices (SQUIDs) enabled the measurement of very weak magnetic fields (femto to pico Tesla) generated from the human skeletal muscles during contraction. However, SQUIDs are bulky, costly, and require working in a temperature-controlled environment, limiting wide-spread clinical use. We introduce a lowprofile magnetoelectric (ME) sensor with analog frontend circuitry that has sensitivity to measure pico-Tesla MMG signals at room temperature. It comprises magnetostrictive and piezoelectric materials, FeCoSiB/AlN. Accurate device modelling and simulation are presented to predict device fabrication process comprehensively using the finite element method (FEM) in COMSOL Multiphysics. The fabricated ME chip with its readout circuit was characterized under a dynamic geomagnetic field cancellation technique. The ME sensor experiment validate a very linear response with high sensitivities of up to 378 V/T driven at a resonance frequency of f res = 7.76 kHz. Measurements show the sensor limit of detections of down to 175 pT/ÝHz at resonance, which is in the range of MMG signals. Such a small-scale sensor has the potential to monitor chronic movement disorders and improve the end-user acceptance of human-machine interfaces.
The behavior of strain-coupled composite magnetoelectric cantilever sensors under excitation with an inhomogeneous magnetic field is investigated. We consider a local excitation generated by a ring-shaped copper coil with one winding, variably positioned around the sensor. 3D finite-element-method simulations of the sensitivity along the longitudinal sensor axis are conducted and compared to the experimental results. The investigated sensor consists of a 2 µm thick magnetostrictive layer [(Fe90Co10)78Si12B10] and a 2 µm thick AlN piezoelectric layer on the opposite sides of a 350 µm thick silicon cantilever of 26.25 mm length and 2.45 mm width. The sensitivity along the sensor axis is investigated for three different frequencies—one below the resonance frequency, one at resonance, and one above resonance. A rich position-dependent sensitivity behavior is observed in simulations and experiments with a maximum sensitivity at ∼4 mm from the fixed end of the cantilever for all three frequencies. Below and at the resonance frequency, a monotonously decreasing sensitivity is observed toward the free end of the cantilever. For the frequency above resonance, we observe a position of zero sensitivity at ∼17 mm from the fixed end and a subsequent second maximum of sensitivity. We attribute the zero sensitivity to the destructive interference of local excitation and resonance effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.