The aim of this study was to determine selected surface properties of varnished beech wood impregnated with natural extracts after exposure to accelerated weathering. Beech wood samples were impregnated with aqueous solutions of 5 and 10% mimosa (Acacia mollissima) and quebracho (Shinopsis lorentzii) tannins. After weathering, colour changes (DL*, Da*, Db*, and DE*) in addition to scratch resistance and surface hardness values were calculated and evaluated. As a result of the weathering process, greater colour changes (DE*) were detected in the beech wood samples impregnated with tannins compared with the unimpregnated control samples. The least colour change occurred in the Tanalith-E-impregnated samples. Total colour change was adversely affected with tannin impregnation after the weathering processes. In terms of surface hardness and scratch resistance, the highest values were observed in the mimosa-solutionimpregnated and control samples. Furthermore, it was found that scratch resistance and hardness values tended to increase during the first period of weathering and decreased thereafter. Regarding surface properties, the best results were obtained when polyurethane varnish was employed compared with the other varnish types.
Coloration Technology
Society of Dyers and Colourists
334
The aim of this study was to investigate the dimensional stability, mechanical and biological performance and thermal degradation of wood–plastic composites made from high-density polyethylene and recycled wood treated with chromated copper arsenate (CCA), a commonly used wood preservative chemical. Virgin pine wood samples were also prepared with and without a coupling agent and used as the control group. Samples of CCA-treated Scots pine ( Pinus sylvestris L.) with varying wood content were produced by adding different ratios of the coupling agent. The recycled CCA-treated wood-filled composites exhibited better flexural and tensile strength properties and dimensional stability than the control group, whilst their impact strength was less. Biological test values showed improved durability against termites and fungus with the recycled CCA-treated wood-filled composites. In addition, the leaching of heavy metals was significantly diminished when the coupling agent was utilized at a level of 5% (w/w), thus presenting a much lower impact on the environment.
We analyzed the effects of heat treatment on the chemical structure of wood from narrow-leafed Ash (Fraxinus angustifolia), a fast-growing and economically valuable species. We also analyzed the effects of heat treatment on the wood's resistance to four decay fungi. Narrow-leafed Ash wood samples were heated with saturated steam to 140, 180, 200, and 220°C for 2, 4, and 6 h. The relative contents of extractable components were analyzed, as well as the levels of holocellulose, cellulose, and lignin. In addition, the density, equilibrium moisture content, and pH of the samples were measured. To determine the effects of heat treatment on resistance to decay fungi, the samples were exposed to the white rot fungus Trametes versicolor, dry rot fungus Serpula lacrymans, and the brown rot fungi Coniophora puteana and Gloeophyllum trabeum. Changes in the chemical composition of the wood due to heat treatment were correlated with increased resistance to fungal decay. While the hemicellulose content was dramatically reduced with increasing temperature and treatment duration, the lignin content increased proportionately. Thus, heat treatment is an environmentally friendly method of preserving narrow-leafed Ash wood against various decay fungi.
This paper evaluated the density and biological resistance of pinewood samples modified with thermomechanical densification and thermal post-treatment. The samples were densified with 20 and 40% compression ratios at either 110 or 150°C. The thermal post-treatment was then applied to the pine samples at 185 and 212°C for 2 h. These samples were exposed to white-rot (Trametes versicolor) and brown-rot (Coniophora puteana) fungi for twelve weeks and the resulting mass loss was determined. In the densified samples, the effects of the compression ratio on T. versicolor-initiated mass loss and of the compression temperature on C. puteana-initiated mass loss were found to be significant. The mass loss was less in the samples compressed at 150°C with the 40% ratio, while the highest mass loss was observed in the undensified samples. In the thermally post-treated samples, the resistance to both decay fungi was significantly increased with the increase of the treatment temperature. The mass loss in the thermally post-treated samples at 212°C after T. versicolor and C. puteana fungi testing was reduced by 73 and 67%, respectively. However, the effect of the densification processes on decay resistance in the thermally post-treated samples was insignificant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.