Interpatient variability in the pharmacokinetics (PK) of sunitinib is high. Single nucleotide polymorphisms (SNPs) in PK candidate genes have been associated with the efficacy and toxicity of sunitinib, but whether these SNPs truly affect the PK of sunitinib remains to be elucidated. This multicenter study involving 114 patients investigated whether these SNPs and haplotypes in genes encoding metabolizing enzymes or efflux transporters are associated with the clearance of sunitinib and its active metabolite SU12662. SNPs were tested as covariates in a population PK model. From univariate analysis, we found that the SNPs in CYP3A4, CYP3A5, and ABCB1 were associated with the clearance of both sunitinib and SU12662. In multivariate analysis, CYP3A4*22 was found to be eliminated last with an effect size of -22.5% on clearance. Observed effect sizes are below the interindividual variability in clearance and are therefore too limited to directly guide individual dosing of sunitinib.
The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic (PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and the soluble vascular endothelial growth factor receptors sVEGFR‐2 and sVEGFR‐3, were measured in 26 patients with mRCC within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C‐II‐005 study. Based on these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time‐to‐event (TTE) models. Baseline sVEGFR‐2 levels were associated with clinical outcome in patients with mRCC, whereas active drug PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD‐guided strategies for the individualization of anti‐angiogenic therapies.
PurposeEarlier, the association of single nucleotide polymorphisms (SNPs) with toxicity and efficacy of sunitinib has been explored in patients with metastatic renal cell carcinoma (mRCC). Recently, additional SNPs have been suggested as potential biomarkers. We investigated these novel SNPs for association with sunitinib treatment outcome in mRCC patients.MethodsIn this exploratory study, we selected SNPs in genes CYP3A4, NR1I2, POR, IL8, IL13, IL4-R, HIF1A and MET that might possibly be associated with sunitinib treatment outcome. Each SNP was tested for association with progression-free survival (PFS) and overall survival (OS) by Cox-regression analysis and for clinical response and toxicity using logistic regression.ResultsWe included 374 patients for toxicity analyses, of which 38 patients with non-clear cell renal cell cancer were excluded from efficacy analyses. The risk for hypertension was increased in the presence of the T allele in IL8 rs1126647 (OR = 1.69, 95 % CI = 1.07–2.67, P = 0.024). The T allele in IL13 rs1800925 was associated with an increase in the risk of leukopenia (OR = 6.76, 95 % CI = 1.35–33.9, P = 0.020) and increased prevalence of any toxicity > grade 2 (OR = 1.75, 95 % CI = 1.06–2.88, P = 0.028). No significant associations were found with PFS, OS or clinical response.ConclusionsWe show that polymorphisms in IL8 rs1126647 and IL13 rs1800925 are associated with sunitinib-induced toxicities. Validation in an independent cohort is required.Electronic supplementary materialThe online version of this article (doi:10.1007/s00228-015-1935-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.