Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.
NF-κB is involved in immune responses, inflammation, oncogenesis, cell proliferation and apoptosis. Even though NF-κB can be activated by DNA damage via Ataxia telangiectasia-mutated (ATM) signalling, little was known about an involvement in DNA repair. In this work, we dissected distinct DNA double-strand break (DSB) repair mechanisms revealing a stimulatory role of NF-κB in homologous recombination (HR). This effect was independent of chromatin context, cell cycle distribution or cross-talk with p53. It was not mediated by the transcriptional NF-κB targets Bcl2, BAX or Ku70, known for their dual roles in apoptosis and DSB repair. A contribution by Bcl-xL was abrogated when caspases were inhibited. Notably, HR induction by NF-κB required the targets ATM and BRCA2. Additionally, we provide evidence that NF-κB interacts with CtIP–BRCA1 complexes and promotes BRCA1 stabilization, and thereby contributes to HR induction. Immunofluorescence analysis revealed accelerated formation of replication protein A (RPA) and Rad51 foci upon NF-κB activation indicating HR stimulation through DSB resection by the interacting CtIP–BRCA1 complex and Rad51 filament formation. Taken together, these results define multiple NF-κB-dependent mechanisms regulating HR induction, and thereby providing a novel intriguing explanation for both NF-κB-mediated resistance to chemo- and radiotherapies as well as for the sensitization by pharmaceutical intervention of NF-κB activation.
NF-κB is activated by DNA-damaging anticancer drugs as part of the cellular stress response. However, the consequences of drug-induced NF-κB activation are still only partly understood. To investigate the impact of NF-κB on the cell’s response to DNA damage, we engineered glioblastoma cells that stably express mutant IκBα superrepressor (IκBα-SR) to block NF-κB activation. Here, we identify a novel pro-apoptotic function of NF-κB in the DNA damage response in glioblastoma cells. Chemotherapeutic drugs that intercalate into DNA and inhibit topoisomerase II such as Doxorubicin, Daunorubicin and Mitoxantrone stimulate NF-κB DNA binding and transcriptional activity prior to induction of cell death. Importantly, specific inhibition of drug-induced NF-κB activation by IκBα-SR or RNA interference against p65 significantly reduces apoptosis upon treatment with Doxorubicin, Daunorubicin or Mitoxantrone. NF-κB exerts this pro-apoptotic function especially after pulse drug exposure as compared to continuous treatment indicating that the contribution of NF-κB becomes relevant during the recovery phase following the initial DNA damage. Mechanistic studies show that NF-κB inhibition does not alter Doxorubicin uptake and efflux or cell cycle alterations. Genetic silencing of p53 by RNA interference reveals that NF-κB promotes drug-induced apoptosis in a p53-independent manner. Intriguingly, drug-mediated NF-κB activation results in a significant increase in DNA damage prior to the induction of apoptosis. By demonstrating that NF-κB promotes DNA damage formation and apoptosis upon pulse treatment with DNA intercalators, our findings provide novel insights into the control of the DNA damage response by NF-κB in glioblastoma.
The bat sarbecovirus RaTG13 is a close relative of SARS-CoV-2, the cause of the COVID-19 pandemic. However, this bat virus was most likely unable to directly infect humans since its Spike (S) protein does not interact efficiently with the human ACE2 receptor. Here, we show that a single T403R mutation increases binding of RaTG13 S to human ACE2 and allows VSV pseudoparticle infection of human lung cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S reduces pseudoparticle infection and viral replication. The T403R RaTG13 S is neutralized by sera from individuals vaccinated against COVID-19 indicating that vaccination might protect against future zoonoses. Our data suggest that a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2 by S proteins of bat coronaviruses. This finding could help to better predict the zoonotic potential of animal coronaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.