A mathematical prediction model has been developed in order to detect particles with a diameter of 10 micrometers or less (PM-10) that are responsible for adverse health effects because of their ability to cause serious respiratory conditions in areas of high pollution such as Chiang Mai City moat area. The prediction model is based on 3 types of Artificial Neural Networks (ANNs), including Multi-layer perceptron (MLP-NN), Radial basis function (RBF-NN), and hybrid of RBF and Genetic algorithm (RBF-NN-GA). The model uses 8 input variables to predict PM-10, consisting of 4 air pollution substances ( CO, O3, NO2 and SO2) and 4 meteorological variables related PM-10 (wind speed, temperature, atmospheric pressure and relative humidity). These 3 types of ANN have proved efficient instrument in predicting the PM-10. However, the performance of RBF-NN was superior in comparison with MLP-NN and RBF-NN-GA respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.