Water chemistry is one of the most important parameters affecting flotation performance. Various types of ions can dissolve and accumulate in process water depending on ore mineralogy, reagent scheme, grinding medium and chemistry of mine site water. Sulfur-based ions (sulfate, thiosulfate, polythionate) are generally observed in flotation of sulfide ores. High concentrations of these ions may reduce efficiency of the flotation process, causing scale problems. Removal of these ions from process water often requires complex water treatment plants with high capital and operating costs. In this study, partial cleaning of water was investigated as an alternative approach for decreasing high sulphate concentrations of 3000–3800 mg/L down to 1000–1500 mg/L, an acceptable concentration for most sulfide ore flotation plants, by using an ion-exchange resin. For this purpose, detailed adsorption tests were performed using a laboratory-scale column system to determine the most suitable type of resin for adsorption of sulfate and thiosalts, kinetics of adsorption and regeneration of the resins. A strong base anion ion exchange resin (Selion SBA2000) was used in the experiments. The findings from the laboratory scale studies were validated in a Cu-Pb-Zn Flotation Plant in an Iberian mine using a larger scale of column set-up. The results showed that 60–70% of sulphates could be successfully removed from process water. Adsorption capacity of the resin was determined as 80.3 mg SO4/g resin. Concentrations of thiosalts and polythionates were also reduced to nearly zero value from 500 mg/L and 1000 mg/L, respectively. Flowrate of water had a significant effect on adsorption performance. The resin could be regenerated successfully using 2% (w/v) NaOH solution and used multiple times for water treatment.
Varied types/geometries of stirred mills have been produced by different manufacturers, and the comparison task has been accomplished for some of the technologies, i.e., Tower mill vs IsaMill. However, the main drawbacks of these comparisons were the uncommon characteristics of the milling environment, such as media size. In this study, HIGMill and IsaMill, which were vertically and horizontally chamber oriented, respectively, were compared for a regrinding process of copper ores with similar characterization and almost the same milling environment. Detailed characterization studies of the two ore types, such as work index, ore breakage and chemical composition, were performed. Modeling of the two mills was also performed to show the variation in the rate of breakage parameters. The entire assessments were based on comparing the signature plots, energy and shape of the product size distribution as well as the stress analyses. The results showed that HIGMill and IsaMill technologies behaved in a different manner for coarse and fine tail of comminution. IsaMill with horizontal orientation was found to be more energy-efficient, particularly at the fine grind size, and produced finer product when it was operated at the same stress level of HIGMill.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.