In this work, Cu 2 ZnSnS 4 (CZTS) absorber layers were fabricated using a two-stage process. Sequentially deposited Cu-Zn-Sn thin film layers on metallic foils were annealed in an Ar + S 2(g) atmosphere. We aimed to investigate the role of flexible titanium and molybdenum foil substrates in the growth mechanism of CZTS thin films. The Raman spectra and X-ray photoelectron spectroscopy analyses of the sulfurized thin films revealed that, except for the presence of Sn-based secondary phases, nearly pure CZTS thin films were obtained. Additionally, the intense and sharp X-ray diffraction peak from the (112) plane provided evidence of good crystallinity. Electron dispersive spectroscopy analysis indicated sufficient sulfur content but poor Zn atomic weight percentage in the films. Absorption and band-gap energy analyses were carried out to confirm the suitability of CZTS thin films as the absorber layer in solar cell applications. Hall effect measurements showed the p-type semiconductor behavior of the CZTS samples. Moreover, the back contact behavior of these metallic flexible substrates was investigated and compared. We detected formation of cracks in the CZTS layer on the molybdenum foils, which indicates the incompatibility of molybdenum's thermal expansion coefficient with the CZTS structure. We demonstrated the application of the magnetron sputtering technique for the fabrication of CZTS thin films on titanium foils having lightweight, flexible properties and suitable for roll-to-roll manufacturing for high throughput fabrication. Titanium foils are also cost competitive compared to molybdenum foils.
a b s t r a c tThe effect of electro-annealing in vacuum and air on the optical and electrical properties of ITO thin films grown by large area DC magnetron sputtering was investigated. Moreover, the performances of the electro-annealed ITO thin films in vacuum and air were compared. Electro-annealing was performed by applying 0.75, 1.00, 1.25 and 1.50 A constant ac current to the ITO thin films. It was observed that the crystallinity of the films was better for the ITO thin films electro-annealed in vacuum. The changes in sheet resistance of electro-annealed ITO thin films with applied currents were detailed. The transmittance of the films increased for both electro-annealing in vacuum and air. A correlation between band-gap and resistivity for all of the electro-annealed thin films was observed.
Efficiency of solar panels degrades as a result of organic contamination such as airborne particles, bird droppings and leaves. Any foreign object on photovoltaic panels reduces the sunlight entering the absorbing surface of the solar panels. Since this leads to a major problem decreasing in energy production, solar panels should be cleaned. The self-cleaning method can be preferred. There are some methods to clean the surface of solar panels. Among the self-cleaning materials, TiO 2 is the most preferable ones because of its powerful photocatalytic properties. In this study, photocatalytic TiO2 were produced in two different nanostructures: nanofibers and thin films. TiO2 nanofibers were successfully produced by electrospinning. TiO2 thin films were fabricated by reactive magnetron sputtering technique. Both TiO2 nanofiber and thin film structures were heat-treated to form TiO2 in anatase phase at 600 • C for 2 h in air. Then, they were evaluated by SEM analyses for morphology, X-ray diffraction (XRD) analyses for phase structures, X-ray photoelectron spectroscopy (XPS) for the chemical state and atomic concentration, and UV-spectrometer for photocatalytic performance. The results indicate that photocatalytic and transmittance properties of TiO 2 thin films are better than those of nanofibers. Consequently, TiO2 based thin films exhibit better performance for solar cell applications due to the surface cleanliness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.