Background Invasive pneumococcal disease remains an important health priority owing to increasing disease incidence caused by pneumococci expressing non-vaccine serotypes. We previously defined 621 Global Pneumococcal Sequence Clusters (GPSCs) by analysing 20 027 pneumococcal isolates collected worldwide and from previously published genomic data. In this study, we aimed to investigate the pneumococcal lineages behind the predominant serotypes, the mechanism of serotype replacement in disease, as well as the major pneumococcal lineages contributing to invasive pneumococcal disease in the post-vaccine era and their antibiotic resistant traits. Methods We whole-genome sequenced 3233 invasive pneumococcal disease isolates from laboratory-based surveillance programmes in Hong Kong (n=78), Israel (n=701), Malawi (n=226), South Africa (n=1351), The Gambia (n=203), and the USA (n=674). The genomes represented pneumococci from before and after pneumococcal conjugate vaccine (PCV) introductions and were from children younger than 3 years. We identified predominant serotypes by prevalence and their major contributing lineages in each country, and assessed any serotype replacement by comparing the incidence rate between the pre-PCV and PCV periods for Israel, South Africa, and the USA. We defined the status of a lineage as vaccine-type GPSC (≥50% 13-valent PCV [PCV13] serotypes) or non-vaccine-type GPSC (>50% non-PCV13 serotypes) on the basis of its initial serotype composition detected in the earliest vaccine period to measure their individual contribution toward serotype replacement in each country. Major pneumococcal lineages in the PCV period were identified by pooled incidence rate using a random effects model. Findings The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. These serotypes were associated with more than one lineage, except for serotype 5 (GPSC8). Serotype replacement was mainly mediated by expansion of non-vaccine serotypes within vaccine-type GPSCs and, to a lesser extent, by increases in non-vaccine-type GPSCs. A globally spreading lineage, GPSC3, expressing invasive serotypes 8 in South Africa and 33F in the USA and Israel, was the most common lineage causing non-vaccine serotype invasive pneumococcal disease in the PCV13 period. We observed that same prevalent non-vaccine serotypes could be associated with distinctive lineages in different countries, which exhibited dissimilar antibiotic resistance profiles. In non-vaccine serotype isolates, we detected significant increases in the prevalence of resistance to penicillin (52 [21%] of 249 vs 169 [29%] of 575, p=0•0016) and erythromycin (three [1%] of 249 vs 65 [11%] of 575, p=0•0031) in the PCV13 period compared with the pre-PCV period. Interpretation Globally spreading line...
Clinical isolates of Neisseria meningitidis with reduced susceptibility to penicillin G (intermediate isolates, PenI ) harbor alterations in the penA gene encoding the penicillin binding protein 2 (PBP2). A 402-bp DNA fragment in the 3 half of penA was sequenced from a collection of 1,670 meningococcal clinical isolates from 22 countries that spanned 60 years. Phenotyping, genotyping, and the determination of MICs of penicillin G were also performed. A total of 139 different penA alleles were detected with 38 alleles that were highly related, clustered together in maximum-likelihood analysis and corresponded to the penicillin G-susceptible isolates. The remaining 101 penA alleles were highly diverse, corresponded to different genotypes or phenotypes, and accounted for 38% of isolates, but no clonal expansion was detected. Analysis of the altered alleles that were represented by at least five isolates showed high correlation with the Pen I phenotype. The deduced amino acid sequence of the corresponding PBP2 comprised five amino acid residues that were always altered. This correlation was not complete for rare alleles, suggesting that other mechanisms may also be involved in conferring reduced susceptibility to penicillin. Evidence of mosaic structures through events of interspecies recombination was also detected in altered alleles. A new website was created based on the data from this work (http://neisseria.org/nm/typing/penA). These data argue for the use of penA sequencing to identify isolates with reduced susceptibility to penicillin G and as a tool to improve typing of meningococcal isolates, as well as to analyze DNA exchange among Neisseria species.
Previous studies on SARS-CoV and MERS-CoV reported the detection of viral RNA in the stool of both symptomatic and asymptomatic individuals. These clinical observations suggest that municipal and hospital wastewater from affected communities may contain SARS-CoV-2 RNA. Recent studies have also reported the presence of SARS-CoV-2 RNA in human feces. Wastewater-based epidemiology (WBE) is a promising approach to understand the prevalence of viruses in a given catchment population, as wastewater contains viruses from symptomatic and asymptomatic individuals. The current study reports the first detection of SARS-CoV-2 RNA in untreated wastewater in Slovenia. Two sizes of centrifugal filters were tested: 30 kDa and 10 kDA AMICON® Ultra-15 Centrifugal Filters, where 10 kDA resulted in a higher concentration factor and higher recovery efficiency. The results in hospital wastewater show that WBE can be used for monitoring COVID -19 and could be applied in municipal wastewater treatment plants as a potential complementary tool for public health monitoring at population level.
Little is known about contaminated surfaces as a route of transmission for SARS-CoV- 2 and a systematic review is missing and urgently needed to provide guidelines for future research studies. As such, the aim of the present study was to review the current scientific knowledge and to summarize the existing studies in which SARS-CoV-2 has been detected in inanimate surfaces. This systematic review includes studies since the emergence of SARS-CoV-2, available in PubMed/MEDLINE and Scopus. Duplicate publications were removed, and exclusion criteria was applied to eliminate unrelated studies, resulting in 37 eligible publications. The present study provides the first overview of SARS-CoV-2 detection in surfaces. The highest detection rates occurred in hospitals and healthcare facilities with COVID-19 patients. Contamination with SARS-CoV-2 on surfaces was detected in a wide range of facilities and surfaces. There is a lack of studies performing viability testing for SARS-CoV-2 recovered from surfaces, and consequently it is not yet possible to assess the potential for transmission via surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.