The main purpose of this paper is to solve the nonlinear Schrödinger equation using some suitable analytical and numerical methods such as Sumudu transform, Adomian Decomposition Method (ADM), and Padé approximation technique. In many literatures, we can see the Sumudu Adomian decomposition method (SADM) and the Laplace Adomian decomposition method (LADM); the SADM and LADM provide similar results. The SADM and LADM methods have been applied to solve nonlinear PDE, but the solution has small convergence radius for some PDE. We perform the SADM solution by using the function P L / M · called double Padé approximation. We will provide the graphical numerical simulations in 3D surface solutions of each application and the absolute error to illustrate the efficiency of the method. In our methods, the nonlinear terms are computed using Adomian polynomials, and the Padé approximation will be used to control the convergence of the series solutions. The suggested technique is successfully applied to nonlinear Schrödinger equations and proved to be highly accurate compared to the Sumudu Adomian decomposition method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.