The aim of the present investigation was to study the underlying causes of noncoagulating (NC) milk. Based on an initial screening in a herd of 53 Danish Holstein-Friesians, 20 individual Holstein-Friesian cows were selected for good and poor chymosin-induced coagulation properties; that is, the 10 cows producing milk with the poorest and best coagulating properties, respectively. These 20 selected cows were followed and resampled on several occasions to evaluate possible changes in coagulation properties. In the follow-up study, we found that among the 10 cows with the poorest coagulating properties, 4 cows consistently produced poorly coagulating (PC) or NC milk, corresponding to a frequency of 7%. Noncoagulating milk was defined as milk that failed to form a coagulum, defined as increase in the storage modulus (G') in oscillatory rheometry, within 45min after addition of chymosin. Poorly coagulating milk was characterized by forming a weak coagulum of low G'. Milk proteomic profiling and contents of different casein variants, ionic contents of Ca, P and Mg, κ-casein (CN) genotypes, casein micelle size, and coagulation properties of the 4 NC or PC samples were compared with milk samples of 4 cows producing milk with good coagulation properties. The studies included determination of production of caseinomacropeptide to ascertain whether noncoagulation could be ascribed to the first or second phase of chymosin-induced coagulation. Caseinomacropeptide was formed in all 8 milk samples after addition of chymosin, indicating that the first step (cleavage of κ-CN) was not the cause of inability to coagulate. Furthermore, the effect of mixing noncoagulating and well-coagulating milk was studied. By gradually blending NC with well-coagulating milk, the coagulation properties of the well-coagulating samples were compromised in a manner similar to titration. Milk samples from cows that consistently produced NC milk were further studied at the udder quarter level. The coagulation properties of the quarter milk samples were not significantly different from those of the composite milk sample, showing that poor coagulation traits and noncoagulation traits of the composite milk were not caused by the milk quality of a single quarter. The milk samples exhibiting PC or NC properties were all of the κ-CN variant AA genotype, and contained casein micelles with a larger mean diameter and a lower fraction of κ-CN relative to total CN than milk with good coagulation properties. Interestingly, the relative proportions of different phosphorylation forms of α-CN differed between well-coagulating milk and PC or NC milk samples. The PC and NC milk samples contained a lower proportion of the 2 less-phosphorylated variants of α-CN (α(S1)-CN-8P and α(S2)-CN-11P) compared with samples of milk that coagulated well.
Chymosin-induced cleavage of κ-casein (κ-CN) occurs during the first enzymatic phase in milk coagulation during cheese manufacturing, where the hydrophilic C-terminal peptide of κ-CN, named caseino-macropeptide (CMP), is released into the whey. The CMP peptide is known for its rather heterogeneous composition with respect to both genetic variation and multiple posttranslational modifications, including phosphorylation and O-linked glycosylation. An approach of liquid chromatography coupled with mass spectrometry was used to investigate (1) the overall protein profile and (2) the release of various forms of CMP after addition of chymosin to individual cow milk samples from 2 breeds, Danish Jersey (DJ) and Danish Holstein-Friesian (DH). The cows were selected to represent distinct homo- and heterozygous types of the κ-CN genetic variants A, B, and E (i.e., genotypes AA, BB, AB, EE, and AE). Initially, investigation of the protein profile showed milk with κ-CN BB exhibited the highest relative content of κ-CN, whereas AE milk exhibited the lowest, and after 40min of renneting >90% of intact κ-CN was hydrolyzed by chymosin in milk representing all κ-CN genotype. By in-depth analysis of the CMP chromatographic profile, multiple CMP isoforms with 1 to 3 O-linked glycans (1-3 G) and 1 to 3 phosphate groups (1-3 P) were identified, as well as nonmodified CMP isoforms. The number of identified CMP isoforms varied to some extent between breeds (21CMP isoforms identified in DJ, 26CMP isoforms in DH) and between κ-CN genetic variants (CMP variant A being the most heterogeneous compared with CMP B and E), as well as between individual samples within each breed. The predominant forms of glycans attached to CMP were found to be the acidic tetrasaccharide {N-acetyl-neuraminic acid α(2-3)galactose β(1-3)[N-acetyl-neuraminic acid α(2-6)]N-acetyl galactose} or trisaccharides {N-acetyl-neuraminic acid α(2-3)galactose β(1-3)N-acetyl galactose and galactose β(1-3)[N-acetyl-neuraminic acid (α2-6)]N-acetyl galactose}. The CMP release was calculated to follow first-order kinetics and was determined by the measurement of CMP content during renneting. The highest rate of release for all CMP isoforms occurred from 0 to 2min after chymosin addition. Concurring results from both breeds showed that CMP variant A with 1-2 P had the highest reaction rate of CMP release, followed by CMP B 1-2 P and then by CMP E 1-2 P (only in DH). All the identified glycosylated CMP isoforms had lower reaction rates of release compared with that of nonglycosylated CMP, thus glycan modifications seemed to negatively influence the reaction rate of chymosin-induced hydrolysis of κ-CN.
The initial stage of the Maillard reaction, protein lactosylation, occurs during heat treatment of milk and continues during subsequent storage. We compared the initial lactosylation as well as the rate of lactosylation of milk proteins during storage in UHT milk subjected to direct or indirect heat treatment using liquid chromatography (LC) coupled with electrospray injection mass spectrometry (ESI-MS). Furosine content was used as an overall marker to allow for a quantitative correlation of lactosylation measured by LC-ESI-MS in the UHT milks. Protein lactosylation increased during the storage period of 6 months at 20°C. Both the initial extent and the rate of lactosylation positively correlated with the number of lysine residues in the different proteins. An exponential or linear correlation with furosine concentration could be established for major and minor lactosylated proteins, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.