BackgroundLarge animal models are important in atrial fibrillation (AF) research, as they can be used to study the pathophysiology of AF and new therapeutic approaches. Unlike other animal models, horses spontaneously develop AF and could therefore serve as a bona fide model in AF research. We therefore aimed to study the electrical, functional and structural remodelling caused by chronic AF in a horse model.MethodNine female horses were included in the study, with six horses tachypaced into self-sustained AF and three that served as a time-matched sham-operated control group. Acceleration in atrial fibrillatory rate (AFR), changes in electrocardiographic and echocardiographic variables and response to medical treatment (flecainide 2 mg/kg) were recorded over a period of 2 months. At the end of the study, changes in ion channel expression and fibrosis were measured and compared between the two groups.ResultsAFR increased from 299 ± 33 fibrillations per minute (fpm) to 376 ± 12 fpm (p < 0.05) and atrial function (active left atrial fractional area change) decreased significantly during the study (p < 0.05). No changes were observed in heart rate or ventricular function. The AF group had more atrial fibrosis compared to the control group (p < 0.05). No differences in ion channel expression were observed.ConclusionHorses with induced AF show signs of atrial remodelling that are similar to humans and other animal models.
BackgroundOnly few pharmacologic compounds have been validated for treatment of atrial fibrillation (AF) in horses. Studies investigating the utility and safety of flecainide to treat AF in horses have produced conflicting results, and the antiarrhythmic mechanisms of flecainide are not fully understood.ObjectivesTo study the potential of flecainide to terminate acutely induced AF of short duration (≥15 minutes), to examine flecainide‐induced changes in AF duration and AF vulnerability, and to investigate the in vivo effects of flecainide on right atrial effective refractory period, AF cycle length, and ventricular depolarization and repolarization.AnimalsNine Standardbred horses. Eight received flecainide, 3 were used as time‐matched controls, 2 of which also received flecainide.MethodsProspective study. The antiarrhythmic and electrophysiologic effects of flecainide were based on 5 parameters: ability to terminate acute pacing‐induced AF (≥15 minutes), and drug‐induced changes in atrial effective refractory period, AF duration, AF vulnerability, and ventricular depolarization and repolarization times. Parameters were assessed at baseline and after flecainide by programmed electrical stimulation methods.ResultsFlecainide terminated all acutely induced AF episodes (n = 7); (AF duration, 21 ± 5 minutes) and significantly decreased the AF duration, but neither altered atrial effective refractory period nor AF vulnerability significantly. Ventricular repolarization time was prolonged between 8 and 20 minutes after initiation of flecainide infusion, but no ventricular arrhythmias were detected.Conclusions and Clinical ImportanceFlecainide had clear antiarrhythmic properties in terminating acute pacing‐induced AF, but showed no protective properties against immediate reinduction of AF. Flecainide caused temporary prolongation in the ventricular repolarization, which may be a proarrhythmic effect.
OBJECTIVE To evaluate heart rate, heart rate variability, and arrhythmia frequency as well as changes in cardiac biomarker values and their association with heart rate in horses before and after an endurance ride. DESIGN Cross-sectional study. ANIMALS 28 Arabian horses competing in a 120- or 160-km endurance ride. PROCEDURES ECG recordings were obtained from each horse before (preride) and after (recovery) an endurance ride to evaluate changes in heart rate and the SD of normal R-R intervals (SDNN) during the initial 12 hours of recovery. Frequencies of supraventricular and ventricular premature complexes before and after the ride were evaluated. Blood samples were obtained before the ride and twice during recovery. Hematologic analyses included measurement of serum cardiac troponin I concentration and creatine kinase isoenzyme MB activity. RESULTS Heart rate was significantly increased and SDNN was decreased during the recovery versus preride period. Frequency of ventricular premature complexes increased during recovery, albeit not significantly, whereas frequency of supraventricular premature complexes was not significantly different between preride and recovery periods. Serum cardiac troponin I concentration and creatine kinase isoenzyme MB activity were significantly increased in the recovery versus preride period. No associations were identified between cardiac biomarkers and velocity, distance, or mean heart rate. CONCLUSIONS AND CLINICAL RELEVANCE Heart rate increased and SDNN decreased in horses after completion of an endurance ride. These and other cardiac changes suggested that prolonged exercise such as endurance riding might have cardiac effects in horses. Additional studies are needed to clarify the clinical relevance of the findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.