BackgroundInhibitors of nicotinamide phosphoribosyltransferase (NAMPT) are promising cancer drugs currently in clinical trials in oncology, including APO866, CHS-828 and the CHS-828 prodrug EB1627/GMX1777, but cancer cell resistance to these drugs has not been studied in detail.MethodsHere, we introduce an analogue of CHS-828 called TP201565 with increased potency in cellular assays. Further, we describe and characterize a panel of cell lines with acquired stable resistance towards several NAMPT inhibitors of 18 to 20,000 fold compared to their parental cell lines.ResultsWe find that 4 out of 5 of the resistant sublines display mutations of NAMPT located in the vicinity of the active site or in the dimer interface of NAMPT. Furthermore, we show that these mutations are responsible for the resistance observed. All the resistant cell lines formed xenograft tumours in vivo. Also, we confirm CHS-828 and TP201565 as competitive inhibitors of NAMPT through docking studies and by NAMPT precipitation from cellular lysate by an analogue of TP201565 linked to sepharose. The NAMPT precipitation could be inhibited by addition of APO866.ConclusionWe found that CHS-828 and TP201565 are competitive inhibitors of NAMPT and that acquired resistance towards NAMPT inhibitors can be expected primarily to be caused by mutations in NAMPT.
Optimization of the anticancer activity for a class of compounds built on a 1,3-dihydroindole-2-one scaffold was performed. In comparison with recently published derivatives of oxyphenisatin the new analogues exhibited an equally potent antiproliferative activity in vitro and improved tolerability and activity in vivo. The best compounds from this series showed low nanomolar antiproliferative activity toward a series of cancer cell lines (compound (S)-38: IC(50) of 0.48 and 2 nM in MCF-7 (breast) and PC3 (prostate), respectively) and potent antitumor effects in well tolerated doses in xenograft models. The racemic compound (RS)-38 showed complete tumor regression at a dose of 20 mg/kg administered iv on days 1 and 7 in a PC3 rat xenograft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.