SSX cancer/testis antigens are frequently expressed in melanoma tumors and represent attractive targets for immunotherapy, but their role in melanoma tumorigenesis has remained elusive. Here, we investigated the cellular effects of SSX2 expression. In A375 melanoma cells, SSX2 expression resulted in an increased DNA content and enlargement of cell nuclei, suggestive of replication aberrations. The cells further displayed signs of DNA damage and genomic instability, associated with p53-mediated G1 cell cycle arrest and a late apoptotic response. These results suggest a model wherein SSX2-mediated replication stress translates into mitotic defects and genomic instability. Arrest of cell growth and induction of DNA double-strand breaks was also observed in MCF7 breast cancer cells in response to SSX2 expression. Additionally, MCF7 cells with ectopic SSX2 expression demonstrated typical signs of senescence (i.e. an irregular and enlarged cell shape, enhanced β-galactosidase activity and DNA double-strand breaks). Since replication defects, DNA damage and senescence are interconnected and well-documented effects of oncogene expression, we tested the oncogenic potential of SSX2. Importantly, knockdown of SSX2 expression in melanoma cell lines demonstrated that SSX2 supports the growth of melanoma cells. Our results reveal two important phenotypes of ectopic SSX2 expression that may drive/support tumorigenesis: First, immediate induction of genomic instability, and second, long-term support of tumor cell growth.
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.
Evaluating the use of sequential organ failure assessment (SOFA) ! 2 compared to quick SOFA (qSOFA) and to systemic inflammatory response syndrome (SIRS) in assessing 28-days mortality in medical patients with acute infection. Methods: In total, 323 patients with verified infection were stratified in accordance to Sepsis-3. SOFA, qSOFA and SIRS were calculated using registered variables. Adverse outcome was death within 28-days of admission. Results: In total, 190 (59%) patients had a SOFA score ! 2 and the overall in-hospital mortality was 21 (6%). Scores of SOFA and qSOFA were both significantly elevated in non-survivors. SOFA showed good accuracy (Area under the receiver operating characteristic (AUROC) = 0.83, 95% CI, 0.76 -0.90) for 28-days mortality compared with qSOFA (AUROC = 0.67, 95% CI, 0.54 -0.80) and SIRS (AUROC = 0.62, 95% Cl 0.49 -0.74). SOFA was ! 2 in all patients who died, while qSOFA and SIRS was ! 2 in 8 (38%) and 17 (81%) of the patients who died, respectively. Conclusion: SOFA score ! 2 was better than SIRS and qSOFA to predict mortality within 28-days of admission among patients with acute infectious disease.
Major overlaps of clinical characteristics and the limitations of conventional diagnostic tests render the initial diagnosis and clinical management of pulmonary disorders difficult. In this pilot study, we analyzed the predictive value of eotaxin, macrophage inflammatory protein 1 alpha (MIP-1α), monocyte chemoattractant protein 4 (MCP-4), and vascular endothelial growth factor (VEGF) in 40 patients hospitalized with acute lower respiratory tract infections (LRTI). The cytokines contribute to the pathogenesis of several inflammatory respiratory diseases, indicating a potential as markers for LRTI. Patients were stratified according to etiology and severity of LRTI, based on baseline C-reactive protein and CURB-65 scores. Using a multiplex immunoassay of plasma, levels of eotaxin and MCP-4 were shown to increase from baseline until day 6 after admission to hospital. The four cytokines were unable to predict the etiology and severity. Eotaxin and MCP-4 were significantly lower in patients with C-reactive protein ≥100, and MIP-1α was significantly higher in the patients with CURB-65 > 3, but the predictive power was low. In conclusion, further evaluation, including more patients, is required to assess the full potential of eotaxin, MCP-4, MIP-1α, and VEGF as biomarkers for LRTI because of their low predictive power and a high interindividual variation of cytokine levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.