Simultaneous localization and mapping (SLAM) represents a crucial algorithm in the autonomous navigation of ground vehicles. Several studies were conducted to improve the SLAM algorithm using various sensors and robot platforms. However, only a few works have focused on applications inside low-illuminated featureless tunnel environments. In this work, we present an improved SLAM algorithm using wheel encoder data from an autonomous ground vehicle (AGV) to obtain robust performance in a featureless tunnel environment. The improved SLAM system uses FAST-LIO2 LiDAR SLAM as the baseline algorithm, and the additional wheel encoder sensor data are integrated into the baseline SLAM structure using the extended Kalman filter (EKF) algorithm. The EKF algorithm is used after the LiDAR odometry estimation and before the mapping process of FAST-LIO2. The prediction step uses the wheel encoder and inertial measurement unit (IMU) data, while the correction step uses the FAST-LIO2 LiDAR state estimation. We used an AGV to conduct experiments in flat and inclined terrain sections in a tunnel environment. The results showed that the mapping and the localization process in the SLAM algorithm was greatly improved in a featureless tunnel environment considering both inclined and flat terrains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.