Transport infrastructures, such as highways, disrupt animal migrations and cause roadkill. To mitigate the latter problem, fences have been built but their effectiveness has rarely been tested under controlled conditions. Here, we tested the effectiveness of the most commonly used fence in France and probably in Europe (wire netting fence) to block animals. We tested the wire netting fence, with and without a structural modification (i.e. an overhang), with three small mammalian species (the European hamster: Cricetus cricetus Linnaeus, 1758; the common vole: Microtus arvalis Pallas, 1778 & the wood mouse: Apodemus sylvaticus Linnaeus, 1758) and two amphibian species (the marsh frog: Pelophylax ridibundus Pallas, 1771 & the European green toad: Bufotes viridis Laurenti, 1768). During testing, all small vertebrate species tested were placed into an arena, from which they could only escape by crossing the wire netting fence. Without an overhang, almost all adult individuals of all tested species were able to climb over a 30 to 40 cm high wire netting fence. Furthermore, the addition of an 8 cm long overhang at the top of the fence stopped the amphibian species tested but not the most agile mammalian species, such as the hamster and the wood mouse. Based on these results, we do not support the construction of wire netting fences along roads as a measure to stop small animals from crossing. We recommend the use of more effective and durable fences, which, in addition, can be associated with wildlife passages to reconnect isolated populations.
To mitigate habitat fragmentation and roadkill, roads are increasingly equipped with wildlife fences and underpasses. However, the effectiveness of such fences in preventing road access for amphibians has not been tested under controlled conditions. In 2019 and 2020, we tested the efficacy of full panel fences of differing material, height, and shape (presence/absence of an overhang), to prevent road access for adult and juvenile amphibians. We selected five species according to locomotion mode: Natterjack toads (runners), European green toads (short-distance jumpers), agile frogs (proficient jumpers), American tree frogs (proficient climbers) and smooth newts (climbers). We found that Natterjack and green toads were unable to cross a concrete fence with a height of 13 and 24 cm, respectively. Addition of a 10 cm overhang reduced the height required to prevent crossing further to 10 and 17 cm, respectively. The ability of these less agile species to cross a certain fence height depended on body length. By contrast, jumping agile frogs and climbing tree frogs were not stopped by the greatest fence height tested (40 cm). However, addition of the overhang stopped the climbing tree frogs at a concrete fence height of 35 cm. An alternative metal fence (with overhang) was tested with some species and performed similar to the concrete fence (with overhang). Finally, the greatest concrete fence height passed by climbing juveniles was 20 cm (smooth newts). Hence, to stop amphibians from road crossing, we recommend the construction of durable (concrete or galvanized metal) and well-maintained fences with a minimum height of 40 cm with a 10 cm overhang.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.