Osteopathia striata with cranial sclerosis (OSCS) is an X-linked dominant condition marked by linear striations mainly affecting the metaphyseal region of the long bones and pelvis in combination with cranial sclerosis. Recently, the disease-causing gene was identified as the WTX gene (FAM123B), an inhibitor of WNT signaling. A correlation was suggested between the position of the mutation and male lethality. We performed genotype and phenotype studies using 18 patients from eight families with possible WTX gene defects and expanded the clinical spectrum of the affected females. All investigated families diagnosed with OSCS had WTX gene defects. One family had a WTX gene deletion; three of four point mutations were novel. The earlier reported WTX c.1072C>T was detected in four sporadic patients and appears to be a hotspot for mutations. Based on the nature of the mutation present in a surviving male patient, our data do not support the hypothesis raised by Jenkins et al. (2009) regarding a genotype-phenotype correlation for male lethality. The finding of a gene involved in WNT signaling as the cause of this sclerosing bone phenotype is not unexpected, but further functional studies are needed to explain the specific features. The WTX gene is mutated in different types of cancer, and it remains to be explained why osteopathia striata patients appear not to have an increased risk of cancer. ß
Cerebellar ataxia (CA) and hereditary spastic paraplegia (HSP) are two of the most prevalent motor disorders with extensive locus and allelic heterogeneity. We implemented clinical exome sequencing, followed by filtering data for a ‘movement disorders' gene panel, as a generic test to increase variant detection in 76 patients with these disorders. Segregation analysis or phenotypic re-evaluation was utilized to substantiate findings. Disease-causing variants were identified in 9 of 28 CA patients, and 8 of 48 HSP patients. In addition, possibly disease-causing variants were identified in 1 and 8 of the remaining CA and HSP patients, respectively. In 10 patients with CA, the total disease-causing or possibly disease-causing variants were detected in 8 different genes, whereas 16 HSP patients had such variants in 12 different genes. In the majority of cases, the identified variants were compatible with the patient phenotype. Interestingly, in some patients variants were identified in genes hitherto related to other movement disorders, such as TH variants in two siblings with HSP. In addition, rare disorders were uncovered, for example, a second case of HSP caused by a VCP variant. For some patients, exome sequencing results had implications for treatment, exemplified by the favorable L-DOPA treatment in a patient with HSP due to ATP13A2 variants (Parkinson type 9). Thus, clinical exome sequencing in this cohort of CA and HSP patients suggests broadening of disease spectra, revealed novel gene–disease associations, and uncovered unanticipated rare disorders. In addition, clinical exome sequencing results have shown their value in guiding practical patient management.
Background-This study aimed to evaluate the prevalence and type of mutations in the major desmosomal genes, Plakophilin-2 (PKP2), Desmoglein-2 (DSG2), and Desmocollin-2 (DSC2), in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) patients. We also aimed to distinguish relevant clinical and ECG parameters. Methods and Results-Clinical evaluation was performed according to the Task Force Criteria (TFC). We analyzed the genes in (a) 57 patients who fulfilled the ARVD/C TFC (TFCϩ), (b) 28 patients with probable ARVD/C (1 major and 1 minor, or 3 minor criteria), and (c) 31 patients with 2 minor or 1 major criteria. In the TFCϩ ARVD/C group, 23 patients (40%) had PKP2 mutations, 4 (7%) had DSG2 mutations, and 1 patient (2%) carried a mutation in DSC2, whereas 1 patient (2%) had a mutation in both DSG2 and DSC2. Among the DSG2 and DSC2 mutation-positive TFCϩ ARVD/C probands, 2 carried compound heterozygous mutations and 1 had digenic mutations. In probable ARVD/C patients and those with 2 minor or 1 major criteria for ARVD/C, mutations were less frequent and they were all heterozygous. Negative T waves in the precordial leads were observed more (PϽ0.002) among mutation carriers than noncarriers and in particular in PKP2 mutation carriers. Conclusions-Mutations in DSG2 and DSC2 are together less prevalent (10%) than PKP2 mutations (40%) in Dutch TFCϩ ARVD/C patients. Interestingly, biallelic or digenic DSC2 and/or DSG2 mutations are frequently identified in TFCϩ ARVD/C patients, suggesting that a single mutation is less likely to cause a full-blown ARVD/C phenotype. Negative T waves on ECG were prevalent among mutation carriers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.