The use of computational complexity in planning, and in AI in general, has always been a disputed topic. A major problem with ordinary worst-case analyses is that they do not provide any quantitative information: they do not tell us much about the running time of concrete algorithms, nor do they tell us much about the running time of optimal algorithms. We address problems like this by presenting results based on the exponential time hypothesis (ETH), which is a widely accepted hypothesis concerning the time complexity of 3-SAT. By using this approach, we provide, for instance, almost matching upper and lower bounds onthe time complexity of propositional planning.
Bäckström has previously studied a number of optimization problems for partial-order plans, like finding a minimum deordering (MCD) or reordering (MCR), and finding the minimum parallel execution length (PPL), which are all NP-complete. We revisit these problems, but applying parameterized complexity analysis rather than standard complexity analysis. We consider various parameters, including both the original and desired size of the plan order, as well as its width and height. Our findings include that MCD and MCR are W[2]-hard and in W[P] when parameterized with the desired order size, and MCD is fixed-parameter tractable (fpt) when parameterized with the original order size. Problem PPL is fpt if parameterized with the size of the non-concurrency relation, but para-NP-hard in most other cases. We also consider this problem when the number (k) of agents, or processors, is restricted, finding that this number is a crucial parameter; this problem is fixed-parameter tractable with the order size, the parallel execution length and k as parameter, but para-NP-hard without k as parameter.
Causal graphs are widely used to analyze the complexity of planning problems. Many tractable classes have been identified with their aid and state-of-the-art heuristics have been derived by exploiting such classes. In particular, Katz and Keyder have studied causal graphs that are hourglasses (which is a generalization of forks and inverted-forks) and shown that the corresponding cost-optimal planning problem is tractable under certain restrictions. We continue this work by studying polytrees (which is a generalization of hourglasses) under similar restrictions. We prove tractability of cost-optimal planning by providing an algorithm based on a novel notion of variable isomorphism. Our algorithm also sheds light on the k-consistency procedure for identifying unsolvable planning instances. We speculate that this may, at least partially, explain why merge-and-shrink heuristics have been successful for recognizing unsolvable instances.
Many real-world planning problems are oversubscription problems where all goals are not simultaneously achievable and the planner needs to find a feasible subset. We present complexity results for the so-called partial satisfaction and net benefit problems under various restrictions; this extends previous work by van den Briel et al. Our results reveal strong connections between these problems and with classical planning. We also present a method for efficiently compiling oversubscription problems into the ordinary plan existence problem; this can be viewed as a continuation of earlier work by Keyder & Geffner.
Aghighi and Bäckström have previously studied cost-optimal planning (COP) and net-benefit planning (NBP) for three action cost domains: the positive integers (Z_+), the non-negative integers (Z_0) and the positive rationals (Q_+). These were indistinguishable under standard complexity analysis for both problems, but separated for COP using parameterised complexity analysis. With the plan cost, k, as parameter, COP was W[2]-complete for Z_+, but para-NP-hard for both Z_0 and Q_+, i.e. presumably much harder. NBP was para-NP-hard for all three domains, thus remaining unseparable. We continue by considering combinations with several additional parameters and also the non-negative rationals (Q_0). Examples of new parameters are the plan length, l, and the largest denominator of the action costs, d. Our findings include: (1) COP remains W[2]-hard for all domains, even if combining all parameters; (2) COP for Z_0 is in W[2] for the combined parameter {k,l}; (3) COP for Q_+ is in W[2] for {k,d} and (4) COP for Q_0 is in W[2] for {k,d,l}. For NBP we consider further additional parameters, where the most crucial one for reducing complexity is the sum of variable utilities. Our results help to understand the previous results, eg. the separation between Z_+ and Q_+ for COP, and to refine the previous connections with empirical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.