In a break-through paper, Lovász [20] determined the chromatic number of Kneser graphs. This was improved by Schrijver [27], by introducing the Schrijver subgraphs of Kneser graphs and showing that their chromatic number is the same as that of Kneser graphs. Alon, Frankl, and Lovász [2] extended Lovász's result to the usual Kneser hypergraphs and one of our main results is to extend this to a new family of general Kneser hypergraphs. Moreover, as a special case, we settle a question from Naserasr and Tardif [26]. In 2011, Meunier introduced almost 2-stable Kneser hypergraphs and determined their chromatic number as an approach to a supposition of Ziegler [35] and a conjecture of Alon, Drewnowski, and Łuczak [3]. In this work, our second main result is to improve this by computing the chromatic number of a large family of Schrijver hypergraphs. Our last main result is to prove the existence of a completely multicolored complete bipartite graph in every coloring of a graph which extends a result of Simonyi and Tardos [29]. JID:YJCTB AID:2930 /FLA [m1L; v1.156; Prn:10/06/2015; 9:53] P.2 (1-24) 2 M. Alishahi, H. Hajiabolhassan / J. Combin. Theory Ser. B ••• (••••) •••-••• The first two results are proved using a new improvement of the Dol'nikov-Kříž [7,18] bound on the chromatic number of general Kneser hypergraphs.
There are several topological results ensuring in any properly colored graph the existence of a colorful complete bipartite subgraph, whose order is bounded from below by some topological invariants of some topological spaces associated to the graph. Meunier [Colorful subhypergraphs in Kneser hypergraphs, The Electronic Journal of Combinatorics, 2014] presented the first colorful type result for uniform hypergraphs. In this paper, we give some new generalizations of the $\mathbb{Z}_p$-Tucker lemma and by use of them, we improve Meunier's result and some other colorful results by Simonyi, Tardif, and Zsbán [Colourful theorems and indices of homomorphism complexes, The Electronic Journal of Combinatorics, 2014] and by Simonyi and Tardos [Colorful subgraphs in Kneser-like graphs, European Journal of Combinatorics, 2007] to uniform hypergraphs. Also, we introduce some new lower bounds for the chromatic number and local chromatic number of uniform hypergraphs. A hierarchy between these lower bounds is presented as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.