In complex networks, especially social networks, networks could be divided into disjoint partitions that the ratio between the number of internal edges (the edges between the vertices within same partition) to the number of outer edges (edges between two vertices of different partitions) is high.Generally, these partitions are called communities. Detecting these communities helps data scientists to extract meaningful information from graphs and analyze them. In the last decades, various algorithms have been proposed to detect communities in graphs, and each one has examined this issue from a different perspective. However, most of these algorithms have a significant time complexity and costly calculations that make them unsuitable to detect communities in large graphs with millions of edges and nodes. In this paper, we have tried to improve Label Propagation Algorithm by using edge betweenness metric, so that it is able to identify distinct communities in both real world and artificial networks in near linear time complexity with acceptable accuracy. Also, the proposed algorithm could detect communities in weighted graphs. Empirical experiments show that the accuracy and speed of the proposed algorithm are acceptable; additionally, the proposed algorithm is scalable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.