Autonomous small robotic platforms require a suite of sensor to navigate and function in complex environment. Due to limited space, onboard power, and processing capability these sensors must be low mass, compact size, low power, and run with minimal processing resources. We are in the process of developing a compact and low-power imaging mmwave radar system for small autonomous robotic platforms operating at Y-band to allow for navigation and obstacle detection in conditions that make the use of passive optical sensors difficult or impossible. The radar system is being fabricated and assembled using silicon micromachining technique with the overall mass of 5 grams, peak power of 200 mW, and operational power of 6.7 mW for one frame per second update rate, field of view of o 25 ± , angular resolution of 2 o , range resolution of 37.5cm, and range of 400m. The beam steering is accomplished by frequency scanning and the range resolution is obtained from the standard FMCW technique utilizing a chirped signal waveform with step discontinuities. This paper will present the overall architecture of this radar system in addition to the phenomenological investigation of scattering from obstacle in indoor environment. It is also shown how radar images taken from indoor scenes can be interpreted and utilized to create the interior layout of a building.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.