Elucidating the cellular and molecular factors governing herpes simplex virus type 1 (HSV-1) neurotropism is a prerequisite for understanding HSV-1 encephalitis and for targeting HSV-1-derived vectors for gene transfer to the brain. Earlier we had described an ex vivo system of mouse brain slices and demonstrated a selective and unique infection pattern, mostly around the ventricles. Here, we examined tissue factors controlling HSV-1 infection of brain slices. We demonstrated that heparan sulphate, while an important factor, does not determine the infection pattern. Hyaluronic acid, but not collagen, appears to enhance HSV-1 brain infection. To investigate whether tissue distribution of viral receptors determines the infection pattern, we examined transcription of herpes virus entry mediator and nectin-1 receptor genes in infected and uninfected brain regions. Both the infected and the uninfected regions express the receptors. We also explored the influence of intra-cellular factors. HSV-1 does not preferentially infect proliferating cells in the brain slices, despite its predilection to the ventricular zones. To delineate the step at which the HSV-1 infection cascade is restricted, mRNA was isolated following tissue infection, and transcription of the immediate-early and late viral genes was evaluated. The results indicated that HSV-1 genes are not expressed in regions that do not express a viral reporter gene. Therefore, we conclude that tissue resistance to infection is associated with a block at or prior to the immediate-early mRNA synthesis. Taken together, using the ex vivo system of organotypic culture we describe here extra-cellular and intra-cellular restriction levels of HSV-1 brain infection.
Itch (pruritus) is a common chronic condition with a lifetime prevalence of over 20%. The mechanisms underlying itch are poorly understood, and its therapy is difficult. There is recent evidence that following nerve injury or inflammation, intercellular communications in sensory ganglia are augmented, which may lead to abnormal neuronal activity, and hence to pain, but there is no information whether such changes take place in an itch model. We studied changes in neurons and satellite glial cells (SGCs) in trigeminal ganglia in an itch model in mice using repeated applications of 2,4,6-trinitro-1-chlorobenzene (TNCB) to the external ear over a period of 11 days. Treated mice showed augmented scratching behavior as compared with controls during the application period and for several days afterwards. Immunostaining for the activation marker glial fibrillary acidic protein in SGCs was greater by about 35% after TNCB application, and gap junction-mediated coupling between neurons increased from about 2% to 13%. The injection of gap junction blockers reduced scratching behavior, suggesting that gap junctions contribute to itch. Calcium imaging studies showed increased responses of SGCs to the pain (and presumed itch) mediator ATP. We conclude that changes in both neurons and SGCs in sensory ganglia may play a role in itch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.