We report on the preparation of fullerene C60 thin films chemically cross-linked with octane-1,8-dithiol, which are capable of binding gold nanoparticles. The formation of a polymer was directly proved by means of laser desorption/ionization time-of-flight mass spectra, in which we observed the cleavage of fullerene-dithiol polymer at different bonds. Fourier-transform infrared, Raman and UV-visible spectra of the functionalized films exhibited notorious changes due to the formation of new covalent bonds between C60 molecules and bifunctional thiol. We further demonstrated that the dithiol-functionalized fullerene can be employed as a support for stable and homogeneous deposition of gold nanoparticles. Their average size is about 5 nm according to high-resolution transmission electron microscopy observations, and up to 20 nm, as found from scanning tunneling microscopy images. The proposed binding mechanism is through a strong coordination attachment between Au nanoclusters and sulfur donor atoms of the functionalized fullerene, as supported by density functional theory calculations.
Short pristine multi-walled carbon nanotubes (MWNTs) were functionalized with a series of long-chain (including polymeric) aliphatic amines, namely octadecylamine (ODA), 1,8-diaminooctane (DO), polyethylene glycol diamine (PEGDA) and polyethylenimine (PEI), via two "green" approaches: (1) gas-phase functionalization (for volatile ODA and DO) and (2) direct heating in the melt (for polymeric PEGDA and PEI). Both of them consist in one-step reaction between MWNTs and amine without the use of organic solvents. The nanostructures obtained were characterized by using infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. It was observed that both solvent-free methods were efficient in the nanotube functionalization, and the nanostructures of variable solubility and morphology were obtained depending on the amines attached. ODA, PEGDA and PEI-functionalized MWNTs were found to be soluble in propanol, meanwhile the MWNTs-PEGDA and MWNTs-PEI were soluble in water as well. The attachment of 1,8-diaminooctane onto MWNTs resulted in cross-linked stable nanostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.