Evidence that multiple, probably non-endocytic mechanisms are involved in the uptake into mammalian cells of the alpha-helical amphipathic model peptide FLUOS-KLALKLALKALKAALKLA-NH2 (I) is presented. Extensive cellular uptake of N-terminally GC-elongated derivatives of I, conjugated by disufide bridges to differently charged peptides, indicated that I-like model peptides might serve as vectors for intracellular delivery of polar bioactive compounds. The mode of the cellular internalization of I comprising energy-, temperature-, pH- and ion-dependent as well as -independent processes suggests analogy to that displayed by small unstructured peptides reported previously (Oehlke et al., Biochim. Biophys. Acta 1330 (1997) 50-60). The uptake behavior of I also showed analogy to that of several protein-derived helical peptide sequences, recently found to be capable of efficiently carrying tagged oligonucleotides and peptides directly into the cytosol of mammalian cells (Derossi et al., J. Biol. Chem. 269 (1994) 10444-10450; Lin et al., J. Biol. Chem. 270 (1995) 14255-14258; Fawell et al., Proc. Natl. Acad. Sci. USA 91 (1994) 664-668; Chaloin et al., Biochemistry 36 (1997) 11179-11187; Vives et al., J. Biol. Chem., 272 (1997) 16010-16017).
The structure of the cell-permeable alpha-helical amphipathic model peptide FLUOS-KLALKLALKALKAALKLA-NH2 (I) was modified stepwise with respect to its helix parameters hydrophobicity, hydrophobic moment and hydrophilic face as well as molecular size and charge. Cellular uptake and membrane destabilizing activity of the resulting peptides were studied using aortic endothelial cells and HPLC combined with CLSM. With the exceptions that a reduction of molecule size below 16 amino acid residues and the introduction of a negative net charge abolished uptake, none of the investigated structural parameters proved to be essential for the passage of these peptides across the plasma membrane. Membrane toxicity also showed no correlation to any of the parameters investigated and could be detected only at concentrations higher than 2 microM. These results implicate helical amphipathicity as the only essential structural requirement for the entry of such peptides into the cell interior, in accord with earlier studies. The pivotal role of helical amphipathicity was confirmed by uptake results obtained with two further pairs of amphipathic/non-amphipathic 18-mer peptides with different primary structure, net charge and helix parameters from I. The amphipathic counterparts were internalized into the cells to a comparable extent as I, whereas no cellular uptake could be detected for the non-amphipathic analogues. The mode of uptake remains unclear and involves both temperature-sensitive and -insensitive processes, indicating non-endocytic contributions.
Saponins are plant glycosides that consist of a steroid, steroid alkaloid or triterpenoid aglycone and one or more sugar chains that are covalently linked by glycosidic binding to the aglycone. Glucose, galactose, glucuronic acid, xylose and rhamnose are commonly bound monosaccharides. Saponins are found in all organs of a variety of higher plants. Due to the great variability of their structures, diverse functions have been described for distinct saponins; including foaming and pore forming properties as well as selective removal of protozoa from the rumen. The most interesting properties are, however, favorable anti-tumorigenic effects. Several saponins inhibit tumor cell growth by cell cycle arrest and apoptosis with half maximal inhibitory concentrations of down to 0.2 microM. A drawback of saponins in tumor therapy is the non-targeted spreading throughout the whole body. Surprisingly, certain saponins were identified that drastically enhance the efficacy of targeted chimeric toxins bearing the ribosome-inactivating protein saporin as cell-killing moiety. It was demonstrated that this effect is substantially more pronounced on target cells than on non-target cells, thus not only preserving the target specificity of the chimeric toxin but also broadening the therapeutic window with simultaneous dose lowering. This review describes the role of saponins as drug in general, their use as single drug treatment in tumor therapy, their combination with conventional tumor treatment strategies and the synergistic effects with particular targeted tumor therapies that are based on recombinant proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.