Diabetic wound healing and angiogenesis remain a worldwide challenge for both clinic and research. The use of adipose stromal cell derived exosomes delivered by bioactive dressing provides a potential strategy for repairing diabetic wounds with less scar formation and fast healing. In this study, we fabricated an injectable adhesive thermosensitive multifunctional polysaccharide-based dressing (FEP) with sustained pH-responsive exosome release for promoting angiogenesis and diabetic wound healing. The FEP dressing possessed multifunctional properties including efficient antibacterial activity/multidrug-resistant bacteria, fast hemostatic ability, self-healing behavior, and tissue-adhesive and good UV-shielding performance. FEP@exosomes (FEP@exo) can significantly enhance the proliferation, migration, and tube formation of endothelial cells in vitro. In vivo results from a diabetic full-thickness cutaneous wound model showed that FEP@exo dressing accelerated the wound healing by stimulating the angiogenesis process of the wound tissue. The enhanced cell proliferation, granulation tissue formation, collagen deposition, remodeling, and re-epithelialization probably lead to the fast healing with less scar tissue formation and skin appendage regeneration. This study showed that combining bioactive molecules into multifunctional dressing should have great potential in achieving satisfactory healing in diabetic and other vascular-impaired related wounds.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.
A 3D structured composite was designed to improve the conductivity and to ease the volume problems of Si anode during cycling for lithium-ions batteries. An in situ method via a controllable gelation process was explored to fabricate the 3D composite of a multilayer carbon matrix toughened by cross-linked carbon nanotubes (CNTs) and decorated with conductive Cu agents. Structurally, a bifunctional carbon shell was formed on the surface of Si to improve the conductivity but alleviate side reactions. Cu particles as conducting agents decorated in the carbon matrix are also used to further improve the conductivity. The volume issue of Si particles can be effectively released via toughening the carbon matrix through the multilayered structure and cross-linked CNTs. Moreover, the carbon matrix might prevent silicon particles from agglomeration. Consequently, the Si@C@Cu composite is expected to exhibit benign electrochemical performances with a commendable capacity of 1500 mAh g–1 (900 cycles, 1 A g–1) and a high rate performance (1035 mAh g–1, 4 A g–1). The DLi + ranging from 10–11 to 10–9 cm–2 s–1 of the Si@C@Cu anode is obtained via the GITT test, which is higher than most reported data.
The simultaneous therapy of tumors and bone defects resulting from tumor surgery is still a challenge in clinical orthopedics. Few nanomaterial systems simultaneously possess multifunctional capacities, including biodegradability, tumor treatment, and enhanced bone regeneration. Herein, we designed a biodegradable monodispersed bioactive glass nanoparticle (BGN) platform with multifunctional properties for enhanced colon cancer photothermo-chemotherapy and bone repair. The mussel-inspired surface assembly with BGN was established as a stable NIR-excited photothermal nanoplatform (BGN@PDA) for ablating tumors. BGN@PDA shows an ultrahigh anticancer drug (DOX) loading with on-demand (pH/NIR-responsive) drug release behavior and antibacterial activity for enhanced tumor chemotherapy (BGN@PDA-DOX). The growth of colon cancer cells (Hct116 cells) and cervical cancer cells (HeLa cells) was significantly inhibited in vitro, and superior local anticancer efficacy could be achieved by synergic chemo-photothermal therapy in vivo. BGN@PDA underwent a gradual degradation in vivo during 60 days and showed negligible toxic side effects. Meanwhile, BGN@PDA could positively induce the osteogenesis of osteoblasts in vitro and possess excellent in vivo bone repair ability in rat cranial defects. This work presents a distinctive strategy to design a bioactive multifunctional nanoplatform for treating tumor disease-resulted bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.