The disposal of food waste is a large environmental problem. In the United Kingdom (UK), approximately 15 million tonnes of food are wasted each year, mostly disposed of in landfill, via composting, or anaerobic digestion (AD). European Union (EU) guidelines state that food waste should preferentially be used as animal feed though for most food waste this practice is currently illegal, because of disease control concerns. Interest in the potential diversion of food waste for animal feed is however growing, with a number of East Asian states offering working examples of safe food waste recycling – based on tight regulation and rendering food waste safe through heat treatment. This study investigates the potential benefits of diverting food waste for pig feed in the UK. A hybrid, consequential life cycle assessment (LCA) was conducted to compare the environmental and health impacts of four technologies for food waste processing: two technologies of South Korean style-animal feed production (as a wet pig feed and a dry pig feed) were compared with two widespread UK disposal technologies: AD and composting. Results of 14 mid-point impact categories show that the processing of food waste as a wet pig feed and a dry pig feed have the best and second-best scores, respectively, for 13/14 and 12/14 environmental and health impacts. The low impact of food waste feed stems in large part from its substitution of conventional feed, the production of which has substantial environmental and health impacts. While the re-legalisation of the use of food waste as pig feed could offer environmental and public health benefits, this will require support from policy makers, the public, and the pig industry, as well as investment in separated food waste collection which currently occurs in only a minority of regions.
Activated carbon is carbon produced from carbonaceous source materials, such as coconut shells, coals, and woods. In this study, an activated carbon production system was analyzed by carbonization and activation in terms of environmental impact and human health. The feedstock of wood wastes for the system reduced fossil fuel consumption and disposal costs. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was one tonne of wood wastes. The boundary expansion method was applied to analyze the wood waste recycling process for activated carbon production. An environmental credit was quantified by avoided impact analysis. Specifically, greenhouse gases discharged from 1 kg of activated carbon production system by feeding wood wastes were evaluated. We found that this system reduced global warming potential of approximately 9.69E+00 kg CO2-eq. compared to the process using coals. The environmental benefits for activated carbon production from wood wastes were analyzed in contrast to other disposal methods. The results showed that the activated carbon system using one tonne of wood wastes has an environmental benefit of 163 kg CO2-eq. for reducing global warming potential in comparison with the same amount of wood wastes disposal by landfilling.
Wind energy has been explored as a viable alternative to fossil fuels in many small island developing states such as those in the Caribbean for a long time. Central to evaluating the feasibility of any wind energy project is choosing the most appropriate wind speed model. This is a function of the metric used to assess the goodness of fit of the statistical models tested. This paper compares a number of common metrics then proposes an alternative to the application-blind statistical tools commonly used. Wind speeds at two locations are considered: Crown Point, Tobago; and Piarco, Trinidad. Hourly wind speeds over a 15-year period have been analyzed for both sites. The available data is modelled using the Birnbaum-Saunders, Exponential, Gamma, Generalized Extreme Value, Generalized Pareto, Nakagami, Normal, Rayleigh and Weibull probability distributions. The distributions were compared graphically and their parameters were estimated using maximum likelihood estimation. Goodness of fit was assessed using the normalised mean square error testing, Chi-squared testing, Kolmogorov-Smirnov, R-squared, Akaike information criteria and Bayesian information criteria tests and the distributions ranked. The distribution ranking varied widely depending on the test used highlighting the need for a more contextualized goodness of fit metric. With this in mind, the concept of application-specific information criteria (ASIC) for testing goodness of fit is introduced. This allows distributions to be ranked by secondary features which are a function of both the primary data and the application space.
The large destruction of industrial facilities, processing factories and urban areas by the 2011 tsunami along the northeast coast of Tohoku Region (Japan) resulted in extensive contamination in most of the fl ooded areas and coastal waters; an enormous amount of mixed debris and radiation compounded these problems, creating both potential environmental and human health hazards which should be assessed throughout the reconstruction and the restoration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.