This study proposes a magnetically actuated microscaffold with the capability of targeted mesenchymal stem cell (MSC) delivery for articular cartilage regeneration. The microscaffold, as a 3D porous microbead, is divided into body and surface portions according to its materials and fabrication methods. The microscaffold body, which consists of poly(lactic-co-glycolic acid) (PLGA), is formed through water-in-oil-in-water emulsion templating, and its surface is coated with amine functionalized magnetic nanoparticles (MNPs) via amino bond formation. The porous PLGA structure of the microscaffold can assist in cell adhesion and migration, and the MNPs on the microscaffold can make it possible to steer using an electromagnetic actuation system that provides external magnetic fields for the 3D locomotion of the microscaffold. As a fundamental test of the magnetic response of the microscaffold, it is characterized in terms of the magnetization curve, velocity, and 3D locomotion of a single microscaffold. In addition, its function with a cargo of MSCs for cartilage regeneration is demonstrated from the proliferation, viability, and chondrogenic differentiation of D1 mouse MSCs that are cultured on the microscaffold. For the feasibility tests for cartilage repair, 2D/3D targeting of multiple microscaffolds with the MSCs is performed to demonstrate targeted stem cell delivery using the microscaffolds and their swarm motion.
A phylogenetic analysis of the tribe Liparocephalini Fenyes is presented based on morphological and molecular characters. The data set comprised 50 adult morphological characters, partial COI (907 bp), COII (366 bp) and 12S rDNA (325-355 bp), and nearly complete sequences of 18S rDNA (1768-1902 bp) for 21 species. Eighteen species of liparocephaline beetles from all eight genera and three outgroups, are included. The sequences were analysed separately and simultaneously with morphological characters by direct optimization in the program POY4 and by partitioned Bayesian analysis for the combined data. The direct optimization (DO) tree for the combined data under equal weighting, which also shows a minimum incongruence length difference value, resulted in a monophyletic Liparocephalini with the following patterns of phylogenetic relationships (outgroup ((Baeostethus, Ianmoorea) (Paramblopusa ((Amblopusa, Halorhadinus) (Liparocephalus, Diaulota))))). A sensitivity analysis using 16 different parameter sets for the combined data shows the monophyly of the liparocephalines and all its genera under all parameter sets. Bayesian analysis resulted in topological differences in comparison with the DO tree under equal weighting only in the position of the genus Paramblopusa and clade (Amblopusa + Halorhadinus), which were reversed. Historical biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini are discussed. Based on the biogeographical analyses, we hypothesize that the ancestor of the Liparocephalini occurred along the Panthallassan Ocean, the direct antecedent of the Pacific Ocean, followed by repeated dispersals to the Nearctic from the Palearctic. We also hypothesize that ancestors of the Liparocephalini appear to have arisen in the littoral zone of beaches and then colonized rocky reef areas in the low tidal zone later through high-to mid-tide zones.
Ursolic acid (UA) is pentacyclic triterpenoic acid that naturally occurs in many medicinal herbs and plants. In this study, we examined the possible suppressive effect of UA extracted from Oldenlandia diffusa on zymosan-induced acute inflammation in mice and complete Freund's adjuvant (CFA)-induced arthritis in rats. UA treatment (per oral) dose-dependently (25-200 mg kg(-1)) suppressed zymosan-induced leucocyte migration and prostaglandin E2 (PGE(2)) production in the air pouch exudates. Since the maximal effective dose of UA was 50 mg kg(-1) in the zymosan experiment, we used this dose of UA in a subsequent study using an adjuvant-induced rheumatoid arthritis model. UA treatment (50 mg kg(-1), per oral, once a day for 10 days) was started from day 12 after adjuvant injection. UA dramatically inhibited paw swelling, plasma PGE(2) production and radiological changes in the joint caused by CFA injection. Moreover, UA significantly suppressed the arthritis-induced mechanical and thermal hyperalgesia as well as the spinal Fos expression, as determined by immunohistochemistry, which was increased by CFA injection. In addition, overall anti-arthritic potency of UA was comparable with ibuprofen (100 mg kg(-1), oral) while UA did not induce significant gastric lesions as compared with the ibuprofen treatment group. These findings strongly suggest that UA is a useful suppressive compound for rheumatoid arthritis treatment with low risk of gastric problems.
Ursolic acid (UA) is pentacyclic triterpenoic acid that naturally occurs in many medicinal herbs and plants. In this study, we examined the possible suppressive effect of UA extracted from Oldenlandia diffusa on zymosan-induced acute inflammation in mice and complete Freund's adjuvant (CFA)-induced arthritis in rats. UA treatment (per oral) dose-dependently (25-200 mg kg(-1)) suppressed zymosan-induced leucocyte migration and prostaglandin E2 (PGE(2)) production in the air pouch exudates. Since the maximal effective dose of UA was 50 mg kg(-1) in the zymosan experiment, we used this dose of UA in a subsequent study using an adjuvant-induced rheumatoid arthritis model. UA treatment (50 mg kg(-1), per oral, once a day for 10 days) was started from day 12 after adjuvant injection. UA dramatically inhibited paw swelling, plasma PGE(2) production and radiological changes in the joint caused by CFA injection. Moreover, UA significantly suppressed the arthritis-induced mechanical and thermal hyperalgesia as well as the spinal Fos expression, as determined by immunohistochemistry, which was increased by CFA injection. In addition, overall anti-arthritic potency of UA was comparable with ibuprofen (100 mg kg(-1), oral) while UA did not induce significant gastric lesions as compared with the ibuprofen treatment group. These findings strongly suggest that UA is a useful suppressive compound for rheumatoid arthritis treatment with low risk of gastric problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.