The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.