Burkholderia anthina R-4183, Burkholderia diffusa R-15930 and Burkholderia stabilis LMG 14294 isolated from green house soils (Gongju-Gun area, South Korea) were characterized and their phosphate solubilizing ability was assessed. Under in vitro culture conditions, all three species were proved to be effective in solubilizing phosphates in varying degrees. Strain Burkholderia anthina exhibited the highest phosphate solubilization in NBRIP medium (665 µg ml -1 ) followed by Burkholderia diffusa (630 µg ml -1) and Burkholderia stabilis (578 µg ml -1 ). However, solubilization of FePO 4 and AlPO 4 was found to be poor in all the strains. Acidification by means of gluconic and oxalic acids accumulation in the culture medium could be the possible mechanism responsible for phosphate solubilization. Glucose at the rate of 3% was found be the best carbon source for Burkholderia anthina while other two Burkholderia species showed maximum phosphate solubilization at 2% of glucose. In the case of nitrogen sources, ammonium and nitrate were equally effective in solubilizing phosphates by Burkholderia species. Despite a slight decrease in phosphate solubilization observed at increasing temperature, all three Burkholderia species could withstand a temperature of 30-35℃, pH at the range of 7-9 and the presence of NaCl (up to 2.5%) without much compromising the phosphate solubilization. As shown with potted mung bean seedlings, all the three isolates could enhance soil fertility and plant growth indicating their great potential to be used as bio-inoculants.
The aim of the present study was to isolate phosphate solubilizing bacteria (PSB) and to assess their potential tolerance to fungicides. Out of thirty PSB, two strains Klebsiella oxytoca and Enterobacter ludwigii were selected on the basis of their tolerance to fungicides. Both strains were assessed for their phosphate solubilizing ability using three different fungicides (difenoconazole, fluazinam and streptomycin) each with the concentrations of 0, 1, 2 or 3 times of the recommended rate. Both strains showed increased phosphate solubilization with difenoconazole at 1, 2 and 3 times of the recommended rate as compared to the phosphate solubilization of the control. The phosphate solubilization in Klebsiella oxytoca was recorded as 326, 538, 518 and 481 µg mL -1 at 0, 1, 2 and 3 times of the recommended rate respectively, whereas in Enterobacter ludwigii it was recorded as 395, 499, 529 and 533 µg mL -1 respectively at various doses. Based on the present findings, it may be concluded that both strains have the potential to be used as bio-inoculants which can solubilize phosphate even at the higher doses as compared to the recommended rate of fungicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.