The gene encoding C/EBP-homologous protein (CHOP), also known as growth arrest and DNA-damageinducible gene 153 (GADD153), is activated by agents that adversely affect the function of the endoplasmic reticulum (ER). Because of the pleiotropic effects of such agents on other cellular processes, the role of ER stress in inducing CHOP gene expression has remained unclear. We find that cells with conditional (temperature-sensitive) defects in protein glycosylation (CHO K12 and BHK tsBN7) induce CHOP when cultured at the nonpermissive temperature. In addition, cells that are defective in initiating the ER stress response, because of overexpression of an exogenous ER chaperone, BiP/GRP78, exhibit attenuated inducibility of CHOP. Surprisingly, attenuated induction of CHOP was also noted in BiP-overexpressing cells treated with methyl methanesulfonate, an agent thought to activate CHOP by causing DNA damage. The roles of DNA damage and growth arrest in the induction of CHOP were therefore reexamined. Induction of growth arrest by culture to confluence or treatment with the enzymatic inhibitor N-(phosphonacetyl)-L-aspartate did not induce CHOP. Furthermore, both a DNA-damage-causing nucleoside analog (5-hydroxymethyl-2-deoxyuridine) and UV light alone did not induce CHOP. These results suggest that CHOP is more responsive to ER stress than to growth arrest or DNA damage and indicate a potential role for CHOP in linking stress in the ER to alterations in gene expression.
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.
With rapidly increased interests in biomass, diverse chemical and biological processes have been applied for biomass utilization. Fourier transform infrared (FTIR) analysis has been used for characterizing different types of biomass and their products, including natural and processed biomass. During biomass treatments, some solvents and/or catalysts can be retained and contaminate biomass. In addition, contaminants can be generated by the decomposition of biomass components. Herein, we report FTIR analyses of a series of contaminants, such as various solvents, chemicals, enzymes, and possibly formed degradation by-products in the biomass conversion process along with poplar biomass. This information helps to prevent misunderstanding the FTIR analysis results of the processed biomass.
A simple and fast fractionation method was developed to obtain carbohydrate-free lignin with well-defined characteristics, such as narrowly distributed molecular weights and a tunable chemical structure for specific applications. In this study, an industrial softwood kraft lignin and a hardwood CELF lignin (coproduct lignin obtained from cosolvent enhanced lignocellulosic fractionation pretreatment) were dissolved in acetone−methanol and tetrahydrofuran−methanol cosolvents, respectively. Hexane was applied as the antisolvent for sequential precipitation of both lignin preparations. A thorough characterization including various NMR techniques (31 P, quantitative 13 C, and 2D-HSQC), GPC, DSC and TGA was conducted to correlate the molecular weight of obtained lignin fractions with their structural features including distributions of aliphatic and phenolic hydroxyl groups and relative abundance of interunit linkages. It was found that approximately 10% of the softwood kraft lignin was lignin carbohydrate complexes, and the latter one could be removed efficiently by decreasing polarity of the cosolvent.
Review on the occurrence of tricin and its derivatives such as tricin-glycosides, tricin-lignans, and tricin-lignan-glycosides in plants. The recent discovery of tricin incorporated with lignin implies the possible association of lignification and tricin biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.