Conclusively, TYE is a safe and effective procedure that can be used to treat eyes with embolus-induced branch retinal artery occlusion with a presenting best-corrected visual acuity of <6/12 and visual defect.
LiMn2O4-yFywere synthesized by a novel method named liquid phase flameless combustion reaction with LiNO3, MnAc2.4H2O and LiF as raw materials calcined at 600 °C for 3 h with HNO3as aided oxidant. All samples were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and electrochemical performance. The results show that: all samples have main phase of LiMn2O4with impurity of Mn3O4and the vibrational bands of Mn-O are a little red shift by doping F, which indicated that the F- enter the host structure of LiMn2O4successfully. The electrochemical performance show that the initial discharge capacities of F-doped samples are lower than pristine LiMn2O4, which is 117.7 mAh•g-1. However, the capacity retention of LiMn2O3.96F0.04and LiMn2O3.90F0.10are 73.6% and 74.5%, respectively, which are higher than pristine LiMn2O4, which is only 69.0% after 40 cycles.
The spinel Mg-doped LiMn2-xMgxO4(0≤x≤0.10)lithium ion cathode material was prepared by LiNO3, Mn(Ac)2.4H2O and Mg(Ac)2.4H2O by a low-temperature flameless solution combustion at 400°C, and HNO3 was used as oxidant. The results showed that the crystallinity of prepared material was superior to the pure LiMn2O4, and this method was better than traditional solid-state method. The particle sizes of the Mg-doped spinel LiMn2-xMgxO4 decreased with the increase of Mg doping, and the particle sizes were 50 to 90 nm; the crystal lattice interface was clear. The original capacities of Mg-doped were lower than that of undoped LiMn2O4 (109.2 mAh/g) excepts for x(Mg)=0.04, original capacity of which was 128mAh/g. However, the rentions of all the doped spinels were higher than that of undoped spinel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.