Parkinson's disease (PD) is featured with α-synuclein-based Lewy body pathology, which however was difficult to observe in conventional two-dimensional (2D) cell culture and even in animal models. We herein aimed to develop a three-dimensional (3D) cellular model of PD to recapitulate the α-synuclein pathologies. All-trans-retinoic acid-differentiated human SH-SY5Y cells and Matrigel were optimized for 3D construction. The 3D cultured cells displayed higher tyrosine hydroxylase expression and improved dopaminergic-like phenotypes than 2D cells as suggested by RNA-sequencing analyses. Multiple forms of α-synuclein, including monomer, low and high molecular weight oligomers, were differentially present in the 2D and 3D cells, but mostly remained unchanged upon the MPP+ or rotenone treatment. Phosphorylated α-synuclein was accumulated and detergent-insoluble α-synuclein fraction was observed in the neurotoxin-treated 3D cells. Importantly, Lewy body-like inclusions were captured in the 3D system, including proteinase K-resistant α-synuclein aggregates, ubiquitin aggregation, β-amyloid and β-sheet protein deposition. The study provides a unique and convenient 3D model of PD which recapitulates critical α-synuclein pathologies and should be useful in multiple PD-associated applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.