Eosinophils are often dominant inflammatory cells present in the lungs of asthma patients. Nonetheless, the role of these leukocytes remains poorly understood. We have created a transgenic line of mice (PHIL) that are specifically devoid of eosinophils, but otherwise have a full complement of hematopoietically derived cells. Allergen challenge of PHIL mice demonstrated that eosinophils were required for pulmonary mucus accumulation and the airway hyperresponsiveness associated with asthma. The development of an eosinophil-less mouse now permits an unambiguous assessment of a number of human diseases that have been linked to this granulocyte, including allergic diseases, parasite infections, and tumorigenesis.
Background A hallmark pathologic feature of Alzheimer’s disease (AD) is accumulation of neuritic senile plaques in the brain parenchyma. Neurotoxic plaque cores are composed predominantly of amyloid-β (Aβ) peptides of 40 and 42 amino acids in length, formed by sequential cleavage of amyloid precursor protein (APP) by β-, and γ-secretases. There is great interest in approaches to modulate Aβ peptide production and develop therapeutic interventions to reduce Aβ levels to halt or slow the progression of neurodegeneration. New Method We characterized and present the BE(2)-M17 human neuroblastoma cell line as a novel in vitro model of the APP-cleavage cascade to support future 1) functional studies of molecular regulators in Aβ production, and 2) high-throughput screening assays of new pharmacotherapeutics. Results In BE(2)-M17 cells, both RNA (i.e., RT-PCR, RNA Sequencing) and protein analyses (i.e., Western blots, ELISA), show endogenous expression of critical components of the amyloidogenic pathway, APP-cleavage intermediates CTF83 and CTF99, and final cleavage products Aβ40 and Aβ42. We further report effects of retinoic acid-mediated differentiation on morphology and gene expression in this cell line. Comparison with Existing Method(s) In contrast to primary isolates or other cell lines reported in current literature, BE(2)-M17 not only sustains baseline expression of the full contingent of APP-processing components, but also remains stably adherent during culture, facilitating experimental manipulations. Conclusions Our evidence supports the use of BE(2)-M17 as a novel, human, cell-based model of the APP processing pathway that offers a potential streamlined approach to dissect molecular functions of endogenous regulatory pathways, and perform mechanistic studies to identify modulators of Aβ production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.