Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine genome using Tophat2. Differentially expressed genes (DEG) between adipose tissues were detected by EdgeR. We identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively and also found 5657 DEGs in the comparison between the intramuscular and the combined omental and subcutaneous fats (C) (FDR<0.01). Depot specifically up- and down- regulated DEGs were 853 in S, 48 in I, and 979 in O. The numbers of DEGs and functional annotation studies suggested that I had the different genetic profile compared to other two adipose tissues. In I, DEGs involved in the developmental process (eg. EGR2, FAS, and KLF7) were up-regulated and those in the immune system process were down-regulated. Many DEGs from the adipose tissues were enriched in the various GO terms of developmental process and KEGG pathway analysis showed that the ECM-receptor interaction was one of commonly enriched pathways in all of the 3 adipose tissues and also functioned as a sub-pathway of other enriched pathways. However, genes involved in the ECM-receptor interaction were differentially regulated depending on the depots. Collagens, main ECM constituents, were significantly up-regulated in S and integrins, transmembrane receptors, were up-regulated in I. Different laminins were up-regulated in the different depots. This comparative transcriptome analysis of three adipose tissues suggested that the interactions between ECM components and transmembrane receptors of fat cells depend on the depot specific adipogenesis.
Individuals with autism spectrum disorders (ASD) often exhibit difficulties with reciprocal social conversation, engaging in limited verbal exchanges, even when language structures are intact. This study employed a multiple baseline design to examine the effectiveness of a self-management intervention targeting (1) on-topic responsiveness to a conversational partner; (2) expansion of the conversational topic; and (3) on-topic question asking. Results demonstrated improved reciprocal social conversation through elaborated responses and on-topic question asking, which generalized and maintained. Social validity measures by naïve observers indicated that the intervention led to meaningful improvements during conversation, including interest, naturalness, and desirability as a conversational partner.
Objective: Genomic selection (GS) is becoming popular in animals' genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method. Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two methods: i) Pearson's correlation of genomic estimated breeding value (GEBV) with EBV of all animals (r M1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (r M2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls). Results: The r M1 estimates in the study were between 0.90 and 0.96 among five traits. The r M1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average r M2 estimates were much smaller than r M1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, r M2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of r M2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the r M2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based r M2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%). Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo provenbull evaluation program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.