AMP-activated protein kinase (AMPK) plays an important role in regulating whole body energy homeostasis. Recently, it has been demonstrated that berberine (BBR) exerts antiobesity and antidiabetic effects in obese and diabetic rodent models through the activation of AMPK in peripheral tissues. Here we show that BBR improves lipid dysregulation and fatty liver in obese mice through central and peripheral actions. In obese db/db and ob/ob mice, BBR treatment reduced liver weight, hepatic and plasma triglyceride, and cholesterol contents. In the liver and muscle of db/db mice, BBR promoted AMPK activity and fatty acid oxidation and changed expression of genes involved in lipid metabolism. Additionally, intracerebroventricular administration of BBR decreased the level of malonyl-CoA and stimulated the expression of fatty acid oxidation genes in skeletal muscle. Together, these data suggest that BBR would improve fatty liver in obese subjects, which is probably mediated not only by peripheral AMPK activation but also by neural signaling from the central nervous system.
Background—
The tumor necrosis factor receptor superfamily, which includes CD40, LIGHT, and OX40, plays important roles in atherosclerosis. CD137 (4-1BB), a member of the tumor necrosis factor receptor superfamily, has been reported to be expressed in human atherosclerotic lesions. However, limited information is available on the precise role of CD137 in atherosclerosis and the effects of blocking CD137/CD137 ligand signaling on lesion formation.
Methods and Results—
We generated CD137-deficient apolipoprotein E–knockout mice (
ApoE
−/−
CD137
−/−
) and LDL-receptor–knockout mice (
Ldlr
−/−
CD137
−/−
) to investigate the role of CD137 in atherogenesis. The deficiency of CD137 induced a reduction in atherosclerotic plaque lesions in both atherosclerosis mouse models, which was attributed to the downregulation of cytokines such as interferon-γ, monocyte chemoattractant protein-1, and tumor necrosis factor-α. CD137 signaling promoted the production of inflammatory molecules, including monocyte chemoattractant protein-1, interleukin-6, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1, in endothelial cells. Stimulation of CD137 ligand signaling activated monocytes/macrophages and augmented the production of proinflammatory cytokines in atherosclerotic vessels.
Conclusions—
CD137/CD137 ligand signaling plays multiple roles in the progression of atherosclerosis, and thus, blockade of this pathway is a promising therapeutic target for the disease.
Rationale
Peroxiredoxin 2 (Prdx2), a thiol-specific peroxidase, has been reported to regulate proinflammatory responses, vascular remodeling, and global oxidative stress.
Objective
Although Prdx2 has been proposed to retard atherosclerosis development, no direct evidence and mechanisms have been reported.
Methods and Results
We show that Prdx2 is highly expressed in endothelial and immune cells in atherosclerotic lesions and blocked the increase of endogenous H2O2 by atherogenic stimulation. Deficiency of Prdx2 in apolipoprotein E–deficient (ApoE−/−) mice accelerated plaque formation with enhanced activation of p65, c-Jun, JNKs, and p38 mitogen-activated protein kinase; and these proatherogenic effects of Prdx2 deficiency were rescued by administration of the antioxidant ebselen. In bone marrow transplantation experiments, we found that Prdx2 has a major role in inhibiting atherogenic responses in both vascular and immune cells. Prdx2 deficiency resulted in increased expression of vascular adhesion molecule-1, intercellular adhesion molecule-1, and monocyte chemotactic protein-1, which led to increased immune cell adhesion and infiltration into the aortic intima. Compared with deficiency of glutathione peroxidase 1 or catalase, Prdx2 deficiency showed a severe predisposition to develop atherosclerosis.
Conclusions
Prdx2 is a specific peroxidase that inhibits atherogenic responses in vascular and inflammatory cells, and specific activation of Prdx2 may be an effective means of antiatherogenic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.