Root colonization by Pseudomonas chlororaphis O6 in cucumber elicited an induced systemic resistance (ISR) against Corynespora cassiicola. In order to gain insight into O6-mediated ISR, a suppressive subtractive hybridization technique was applied and resulted in the isolation of a cucumber galactinol synthase (CsGolS1) gene. The transcriptional level of CsGolS1 and the resultant galactinol content showed an increase several hours earlier under O6 treatment than in the water control plants following C. cassiicola challenge, whereas no difference was detected in the plants without a pathogen challenge. The CsGolS1-overexpressing transgenic tobacco plants demonstrated constitutive resistance against the pathogens Botrytis cinerea and Erwinia carotovora, and they also showed an increased accumulation in galactinol content. Pharmaceutical application of galactinol enhanced the resistance against pathogen infection and stimulated the accumulation of defense-related gene transcripts such as PR1a, PR1b, and NtACS1 in wild-type tobacco plants. Both the CsGolS1-overexpressing transgenic plants and the galactinol-treated wild-type tobacco plants also demonstrated an increased tolerance to drought and high salinity stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.